Membrane-Tethered Ligands: Tools for Cell-Autonomous Pharmacological Manipulation of Biological Circuits
Choi C, Nitabach MN. Membrane-Tethered Ligands: Tools for Cell-Autonomous Pharmacological Manipulation of Biological Circuits. Physiology 2013, 28: 164-171. PMID: 23636262, PMCID: PMC4073904, DOI: 10.1152/physiol.00056.2012.Peer-Reviewed Original ResearchConceptsMembrane-tethered ligandsCellular circuitsCell surface receptorsCognate cell surface receptorsCell-autonomous mannerG protein-coupled receptorsCell-specific promoterIon channel subtypesIntercellular communication pathwaysRecombinant transgeneBiological processesStructural modulesBiological circuitsBiological significanceIon channelsSpecific phenotypesSurface receptorsCommunication pathwaysPhysiological circuitsSpecific manipulationChannel subtypesReceptorsSuch manipulationsPharmacological manipulationPromoterO-GlcNAc Signaling Entrains the Circadian Clock by Inhibiting BMAL1/CLOCK Ubiquitination
Li MD, Ruan HB, Hughes ME, Lee JS, Singh JP, Jones SP, Nitabach MN, Yang X. O-GlcNAc Signaling Entrains the Circadian Clock by Inhibiting BMAL1/CLOCK Ubiquitination. Cell Metabolism 2013, 17: 303-310. PMID: 23395176, PMCID: PMC3647362, DOI: 10.1016/j.cmet.2012.12.015.Peer-Reviewed Original ResearchConceptsCircadian clockProtein modificationNutrient-sensing pathwaysO-GlcNAc signalingHexosamine biosynthesis pathwayCovalent protein modificationBiosynthesis pathwayGlcNAc transferaseNutritional signalsClock oscillationsO-GlcNAcylationAberrant circadian rhythmsClock targetsOGT expressionCircadian oscillationsUbiquitinationN-acetylglucosamineNutrient fluxesMetabolic oscillationsBMAL1GenesPathwayCircadian rhythmKey mechanismClock