2021
Cortical organoids model early brain development disrupted by 16p11.2 copy number variants in autism
Urresti J, Zhang P, Moran-Losada P, Yu N, Negraes P, Trujillo C, Antaki D, Amar M, Chau K, Pramod A, Diedrich J, Tejwani L, Romero S, Sebat J, Yates III J, Muotri A, Iakoucheva L. Cortical organoids model early brain development disrupted by 16p11.2 copy number variants in autism. Molecular Psychiatry 2021, 26: 7560-7580. PMID: 34433918, PMCID: PMC8873019, DOI: 10.1038/s41380-021-01243-6.Peer-Reviewed Original ResearchConceptsCortical organoidsCommon copy number variationNeural progenitorsRatio of neuronsPotential neurobiological mechanismsOrganoid sizeEarly brain developmentSynapse numberNeuronal maturationMigration deficitsBrain developmentNeurodevelopmental processesIon channel activityNeurobiological mechanismsNeuron migrationNeocortical developmentSkin fibroblastsChannel activityPatientsEarly neurogenesisMicrocephaly phenotypeNeurite outgrowthNeuronsAutism spectrum disorderSmall GTPase RhoA
2020
Pharmacological reversal of synaptic and network pathology in human MECP2‐KO neurons and cortical organoids
Trujillo CA, Adams JW, Negraes PD, Carromeu C, Tejwani L, Acab A, Tsuda B, Thomas CA, Sodhi N, Fichter KM, Romero S, Zanella F, Sejnowski TJ, Ulrich H, Muotri AR. Pharmacological reversal of synaptic and network pathology in human MECP2‐KO neurons and cortical organoids. EMBO Molecular Medicine 2020, 13: emmm202012523. PMID: 33501759, PMCID: PMC7799367, DOI: 10.15252/emmm.202012523.Peer-Reviewed Original ResearchConceptsRett syndromeCortical organoidsPredominant etiologyNeurodevelopmental impairmentPharmacological reversalPHA-543613Neuropathologic phenotypeSynaptic dysregulationClinical studiesHuman pluripotent stem cell technologySymptomatic severityHuman neuronsMeCP2 deficiencyCandidate therapeuticsBrain mosaicismNetwork pathologyPharmacological compoundsPluripotent stem cell (iPSC) technologyNeurodevelopmental disordersMECP2 mutationsNeuropathologyMECP2 geneNeuronsCellular mosaicismStem cell technology
2017
Modeling of TREX1-Dependent Autoimmune Disease using Human Stem Cells Highlights L1 Accumulation as a Source of Neuroinflammation
Thomas CA, Tejwani L, Trujillo CA, Negraes PD, Herai RH, Mesci P, Macia A, Crow YJ, Muotri AR. Modeling of TREX1-Dependent Autoimmune Disease using Human Stem Cells Highlights L1 Accumulation as a Source of Neuroinflammation. Cell Stem Cell 2017, 21: 319-331.e8. PMID: 28803918, PMCID: PMC5591075, DOI: 10.1016/j.stem.2017.07.009.Peer-Reviewed Original ResearchMeSH KeywordsAstrocytesAutoimmune DiseasesBase SequenceCell ExtractsChildCytosolDNAExodeoxyribonucleasesHumansInfantInfant, NewbornInflammationInterferonsLong Interspersed Nucleotide ElementsMaleMicrocephalyNervous SystemNeural Stem CellsNeuronsOrganoidsPhenotypePhosphoproteinsStem CellsUp-RegulationConceptsThree-prime repair exonuclease 1Aicardi-Goutières syndromeAutoimmune diseasesSource of neuroinflammationType I interferon secretionSystemic lupus erythematosusRepair exonuclease 1Reverse transcriptase inhibitorStem cellsDisease-relevant phenotypesNeuroinflammatory disordersLupus erythematosusTherapeutic regimensCortical organoidsInflammatory responseInterferon secretionRelated disordersObserved neurotoxicityNeural cellsNeurotoxicityDiseaseNeuronsPluripotent stem cellsDisordersHuman stem cells