2022
PLD3 affects axonal spheroids and network defects in Alzheimer’s disease
Yuan P, Zhang M, Tong L, Morse T, McDougal R, Ding H, Chan D, Cai Y, Grutzendler J. PLD3 affects axonal spheroids and network defects in Alzheimer’s disease. Nature 2022, 612: 328-337. PMID: 36450991, PMCID: PMC9729106, DOI: 10.1038/s41586-022-05491-6.Peer-Reviewed Original ResearchConceptsAxonal spheroidsAlzheimer's diseaseConduction blockadeNeural circuit abnormalitiesNeural network dysfunctionAmyloid removalCircuit abnormalitiesAge-dependent accumulationNetwork dysfunctionEndolysosomal vesiclesMouse modelNeuronal overexpressionCognitive declineAxonal connectivityDiseasePrecise mechanismBlockadePLD3Neural network functionSpheroid growthSevere disruptionCurrent sinkVoltage imagingSize-dependent mannerDysfunctionKCNJ8/ABCC9-containing K-ATP channel modulates brain vascular smooth muscle development and neurovascular coupling
Ando K, Tong L, Peng D, Vázquez-Liébanas E, Chiyoda H, He L, Liu J, Kawakami K, Mochizuki N, Fukuhara S, Grutzendler J, Betsholtz C. KCNJ8/ABCC9-containing K-ATP channel modulates brain vascular smooth muscle development and neurovascular coupling. Developmental Cell 2022, 57: 1383-1399.e7. PMID: 35588738, DOI: 10.1016/j.devcel.2022.04.019.Peer-Reviewed Original ResearchConceptsK-ATP channel functionVascular smooth muscle cell differentiationChannel functionSmooth muscle cell differentiationMuscle cell differentiationVascular smooth muscle developmentSmooth muscle developmentVSMC developmentHuman central nervous system disordersMuscle developmentVSMC differentiationCentral nervous system disordersCell differentiationChemical inhibitionVoltage-dependent calcium channelsATP-sensitive potassium channelsFunction mutationsCell progenitorsK-ATP channelsCerebral blood flowCell culture modelMolecular causesNervous system disordersIntracellular CaVasoconstrictive capacity
2020
Imaging and optogenetic modulation of vascular mural cells in the live brain
Tong L, Hill RA, Damisah EC, Murray KN, Yuan P, Bordey A, Grutzendler J. Imaging and optogenetic modulation of vascular mural cells in the live brain. Nature Protocols 2020, 16: 472-496. PMID: 33299155, DOI: 10.1038/s41596-020-00425-w.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsRegional cerebral blood flowMural cellsBlood-brain barrier maintenanceCerebral ischemia mouse modelAge-related neurodegenerative diseasesCerebral blood flowSmooth muscle cell physiologyBrain blood vesselsIschemia mouse modelVascular mural cellsBrain microvesselsHigh-resolution intravital imagingVascular disordersMouse modelBlood flowMuscle cell physiologyTransgenic miceCalcium transientsAlzheimer's diseaseCalcium imagingCell subtypesBarrier maintenanceNeurodegenerative diseasesTwo-photon optogeneticsBlood vessels
2017
A fluoro-Nissl dye identifies pericytes as distinct vascular mural cells during in vivo brain imaging
Damisah EC, Hill RA, Tong L, Murray KN, Grutzendler J. A fluoro-Nissl dye identifies pericytes as distinct vascular mural cells during in vivo brain imaging. Nature Neuroscience 2017, 20: 1023-1032. PMID: 28504673, PMCID: PMC5550770, DOI: 10.1038/nn.4564.Peer-Reviewed Original Research
2016
The temporal–spatial dynamics of feature maps during monocular deprivation revealed by chronic imaging and self-organization model simulation
Tong L, Xie Y, Yu H. The temporal–spatial dynamics of feature maps during monocular deprivation revealed by chronic imaging and self-organization model simulation. Neuroscience 2016, 339: 571-586. PMID: 27746342, DOI: 10.1016/j.neuroscience.2016.10.014.Peer-Reviewed Original Research
2015
Regional Blood Flow in the Normal and Ischemic Brain Is Controlled by Arteriolar Smooth Muscle Cell Contractility and Not by Capillary Pericytes
Hill RA, Tong L, Yuan P, Murikinati S, Gupta S, Grutzendler J. Regional Blood Flow in the Normal and Ischemic Brain Is Controlled by Arteriolar Smooth Muscle Cell Contractility and Not by Capillary Pericytes. Neuron 2015, 87: 95-110. PMID: 26119027, PMCID: PMC4487786, DOI: 10.1016/j.neuron.2015.06.001.Peer-Reviewed Original ResearchConceptsSmooth muscle cellsCerebral blood flowBlood flowCapillary pericytesArteriolar smooth muscle cellsBlood flow regulationRegional blood flowNormal brain functionSmooth muscle actinSmooth muscle cell contractilityMuscle cell contractilityPericyte constrictionIschemic brainBrain ischemiaMicrovascular occlusionNeurovascular couplingMicrovascular diametersWhisker stimulationMuscle actinMuscle cellsBrain functionMajor causePathological conditionsPericytesVascular tree
2011
Feedback from area 21a influences orientation but not direction maps in the primary visual cortex of the cat
Tong L, Zhu B, Li Z, Shou T, Yu H. Feedback from area 21a influences orientation but not direction maps in the primary visual cortex of the cat. Neuroscience Letters 2011, 504: 141-145. PMID: 21945948, DOI: 10.1016/j.neulet.2011.09.019.Peer-Reviewed Original ResearchConceptsVisual cortexArea 21aArea 17Intrinsic signal optical imagingCat visual cortexPrimary visual cortexMonkey visual cortexHigher cortical areasSpatial frequency dependencyCortical areasCortexDorsal motionInformation processing streamCatsColor pathwaysProcessing streamsPMLSVisual systemOrientation responsesPathwayNeuronsAbove hypothesisOblique effectResponse