Featured Publications
An asymmetric sheath controls flagellar supercoiling and motility in the leptospira spirochete
Gibson KH, Trajtenberg F, Wunder EA, Brady MR, San Martin F, Mechaly A, Shang Z, Liu J, Picardeau M, Ko A, Buschiazzo A, Sindelar CV. An asymmetric sheath controls flagellar supercoiling and motility in the leptospira spirochete. ELife 2020, 9: e53672. PMID: 32157997, PMCID: PMC7065911, DOI: 10.7554/elife.53672.Peer-Reviewed Original ResearchConceptsCryo-electron tomographyKey functional attributesNative flagellar filamentsHigh-resolution cryo-electron tomographyPeriplasmic spaceSheath proteinStructural basisFlagellar filamentsLeptospira spirochetesSpirochete bacteriaEntire cellFunctional attributesX-ray crystallographyImportant pathogenSupercoilingMotilityBacteriaFilamentsCell bodiesFlagellaSpirochetesProteinFlagellinDistinctive meansEndoflagella
2018
FcpB Is a Surface Filament Protein of the Endoflagellum Required for the Motility of the Spirochete Leptospira
Wunder EA, Slamti L, Suwondo DN, Gibson KH, Shang Z, Sindelar CV, Trajtenberg F, Buschiazzo A, Ko AI, Picardeau M. FcpB Is a Surface Filament Protein of the Endoflagellum Required for the Motility of the Spirochete Leptospira. Frontiers In Cellular And Infection Microbiology 2018, 8: 130. PMID: 29868490, PMCID: PMC5953323, DOI: 10.3389/fcimb.2018.00130.Peer-Reviewed Original ResearchConceptsUnique motility apparatusRandom transposon mutantsWild-type morphologyCryo-electron microscopyHypothetical genesMotility-deficient mutantsMotility apparatusFlagellar proteinsTransposon mutantsMotility phenotypeNovel componentUnknown functionProtein B.Spiral-shaped endsFilament proteinsMutantsGenesSpirochete LeptospiraFCPbEndoflagellaBacteriaProteinFilamentsPhenotypeSurface components
2014
Filament formation by metabolic enzymes is a specific adaptation to an advanced state of cellular starvation
Petrovska I, Nüske E, Munder M, Kulasegaran G, Malinovska L, Kroschwald S, Richter D, Fahmy K, Gibson K, Verbavatz J, Alberti S. Filament formation by metabolic enzymes is a specific adaptation to an advanced state of cellular starvation. ELife 2014, 3: e02409. PMID: 24771766, PMCID: PMC4011332, DOI: 10.7554/elife.02409.Peer-Reviewed Original ResearchMetabolic enzymesCellular starvationFilament formationKey metabolic enzymesEnzyme glutamine synthetaseNutritional stressHigher order fibrilsGlutamine synthetaseFunctional roleMacromolecular crowdingSpecific adaptationsPhysical organizationGeneral mechanismStarvationEnzymeBack stackingEnzymatic inactivationIntracellular pHFilamentsMetabolismGLN1Broad implicationsCellsYeastBiology