2001
Inhibition of Voltage-Dependent Sodium Channels Suppresses the Functional Magnetic Resonance Imaging Response to Forepaw Somatosensory Activation in the Rodent
Kida I, Hyder F, Behar K. Inhibition of Voltage-Dependent Sodium Channels Suppresses the Functional Magnetic Resonance Imaging Response to Forepaw Somatosensory Activation in the Rodent. Cerebrovascular And Brain Metabolism Reviews 2001, 21: 585-591. PMID: 11333369, DOI: 10.1097/00004647-200105000-00013.Peer-Reviewed Original ResearchConceptsMagnetic resonance imaging responseSomatosensory activationFunctional magnetic resonance imaging (fMRI) responsesForepaw stimulationLamotrigine treatmentImaging responseGlutamate release inhibitorBOLD fMRI responsesFunctional imaging signalsBOLD fMRI signal changesFMRI signal changesTime-dependent mannerBaseline CBFAbsence of stimulationSomatosensory cortexRelease inhibitorChannel blockersRat cortexNeurotransmitter cycleBlood flow experimentsFMRI responsesBOLD fMRIStimulationLamotrigineTreatment
1984
Detection of cerebral lactate in vivo during hypoxemia by 1H NMR at relatively low field strengths (1.9 T).
Behar K, Rothman D, Shulman R, Petroff O, Prichard J. Detection of cerebral lactate in vivo during hypoxemia by 1H NMR at relatively low field strengths (1.9 T). Proceedings Of The National Academy Of Sciences Of The United States Of America 1984, 81: 2517-2519. PMID: 6585812, PMCID: PMC345093, DOI: 10.1073/pnas.81.8.2517.Peer-Reviewed Original Research