2024
Exploring molecular and cellular mechanisms and phenotypic characteristics of NAGLU Arg234Gly and Asp312Asn variants
Kaymakcalan Celebiler H, Barak T, Rai D, Kaya I, Erbilgin S, Cikili Uytun M, Oztop D, Gumus H, Per H, Ceylaner S, Bozkurt I, Kontaridis M, Bilguvar K, Akhun N, Kilincaslan A, Caglayan A, Erson-Omay E, Gunel M, Ercan-Sencicek A. Exploring molecular and cellular mechanisms and phenotypic characteristics of NAGLU Arg234Gly and Asp312Asn variants. Molecular Syndromology 2024, 1-15. DOI: 10.1159/000542367.Peer-Reviewed Original ResearchWhole-exome sequencingStandard Sanger sequencingMucopolysaccharidosis type IIIBExome sequencingProgressive neurodegenerative disorderConsanguineous familySanger sequencingNAGLU genePhenotypic characteristicsMagnetic resonance imagingEnzymatic assayNeurodegenerative disordersAffected individualsLoss of activityNeurodegenerative symptomsAutosomal recessive lysosomal disorderCellular mechanismsVariantsLysosomal disorderEnzymeNormal MRI findingsSequenceMPS IIIBMRI findingsType IIIB
2023
Toward Precision Oncology in Glioblastoma with a Personalized Cancer Genome Reporting Tool and Genetic Changes Identified by Whole Exome Sequencing
Erdogan O, Özkaya Ş, Erzik C, Bilguvar K, Arga K, Bayraklı F. Toward Precision Oncology in Glioblastoma with a Personalized Cancer Genome Reporting Tool and Genetic Changes Identified by Whole Exome Sequencing. OMICS A Journal Of Integrative Biology 2023, 27: 426-433. PMID: 37669106, DOI: 10.1089/omi.2023.0117.Peer-Reviewed Original ResearchConceptsTreatment optionsWhole-exome sequencingPrecision/personalized medicineExome sequencingLimited treatment optionsGenetic alterationsPersonalized medicinePotential therapeutic targetAggressive brain tumorTumor tissue samplesPoor prognosisGBM patientsTargetable pathwaysBrain tumorsTherapeutic targetLarger studyMolecular findingsNeurosurgical oncologyGenomic profilingPatientsPersonalized therapyMolecular profilingAkt/GlioblastomaPrecision oncology169 Exome Sequencing Implicates Endothelial Ras Signaling Network in Vein of Galen Aneurysmal Malformation
Mekbib K, Zhao S, Nelson-Williams C, Prendergast A, Zeng X, Rolle M, Shohfi J, Smith H, Ocken J, Moyer Q, Piwowarczyk P, Allington G, Dong W, van der Ent M, Chen D, Li B, Duran D, Mane S, Walcott B, Stapleton C, Aagaard-Kienitz B, Rodesch G, Jackson E, Smith E, Orbach D, Berenstein A, Bilguvar K, Zhao H, Erson-Omay Z, King P, Huttner A, Lifton R, Boggon T, Nicoli S, Jin S, Kahle K. 169 Exome Sequencing Implicates Endothelial Ras Signaling Network in Vein of Galen Aneurysmal Malformation. Neurosurgery 2023, 69: 22-22. DOI: 10.1227/neu.0000000000002375_169.Peer-Reviewed Original ResearchPathway analysisP120 Ras-GAPExome sequencingSevere vascular defectsGalen aneurysmal malformationReceptor tyrosine kinase activityTyrosine kinase activityDamaging de novoMutant embryosRas-GAPSignaling networksGenetic regulationRas activationAneurysmal malformationZebrafish modelDe novo mutationsKinase activityDisease genesAxon guidanceGenetic samplesWhole-exome sequencingHigh-output heart failureFunctional studiesCollected specimensSequencing
2020
Mutations and Copy Number Alterations in IDH Wild-Type Glioblastomas Are Shaped by Different Oncogenic Mechanisms
Ülgen E, Karacan S, Gerlevik U, Can Ö, Bilguvar K, Oktay Y, Akyerli C, Yüksel Ş, Danyeli A, Tihan T, Sezerman OU, Yakıcıer MC, Pamir MN, Özduman K. Mutations and Copy Number Alterations in IDH Wild-Type Glioblastomas Are Shaped by Different Oncogenic Mechanisms. Biomedicines 2020, 8: 574. PMID: 33297360, PMCID: PMC7762325, DOI: 10.3390/biomedicines8120574.Peer-Reviewed Original ResearchUnderlying oncogenic mechanismsOncogenic mechanismsNumber alterationsDifferent oncogenic mechanismsDiffuse midline gliomaMismatch repair deficiencySingle nucleotide variationsWhole-exome sequencingIDH wild-type glioblastomaWild-type glioblastomaPrimary tumorMolecular subsetsBlood samplesMidline gliomaAdult diffuse gliomasHeterogenous groupWt glioblastomaCopy number alterationsGliomasRecurrenceExome sequencingDiffuse gliomasRepair deficiencyAlteration frequencyGenomic alterationsExome sequencing implicates genetic disruption of prenatal neuro-gliogenesis in sporadic congenital hydrocephalus
Jin SC, Dong W, Kundishora AJ, Panchagnula S, Moreno-De-Luca A, Furey CG, Allocco AA, Walker RL, Nelson-Williams C, Smith H, Dunbar A, Conine S, Lu Q, Zeng X, Sierant MC, Knight JR, Sullivan W, Duy PQ, DeSpenza T, Reeves BC, Karimy JK, Marlier A, Castaldi C, Tikhonova IR, Li B, Peña HP, Broach JR, Kabachelor EM, Ssenyonga P, Hehnly C, Ge L, Keren B, Timberlake AT, Goto J, Mangano FT, Johnston JM, Butler WE, Warf BC, Smith ER, Schiff SJ, Limbrick DD, Heuer G, Jackson EM, Iskandar BJ, Mane S, Haider S, Guclu B, Bayri Y, Sahin Y, Duncan CC, Apuzzo MLJ, DiLuna ML, Hoffman EJ, Sestan N, Ment LR, Alper SL, Bilguvar K, Geschwind DH, Günel M, Lifton RP, Kahle KT. Exome sequencing implicates genetic disruption of prenatal neuro-gliogenesis in sporadic congenital hydrocephalus. Nature Medicine 2020, 26: 1754-1765. PMID: 33077954, PMCID: PMC7871900, DOI: 10.1038/s41591-020-1090-2.Peer-Reviewed Original ResearchConceptsCongenital hydrocephalusPoor neurodevelopmental outcomesPost-surgical patientsCerebrospinal fluid accumulationNeural stem cell biologyGenetic disruptionWhole-exome sequencingPrimary pathomechanismEarly brain developmentNeurodevelopmental outcomesHigh morbidityCSF diversionMutation burdenFluid accumulationBrain ventriclesCH casesBrain developmentDe novo mutationsPatientsExome sequencingCSF dynamicsDisease mechanismsHydrocephalusNovo mutationsCell typesHuman CRY1 variants associate with attention deficit/hyperactivity disorder
Onat OE, Kars ME, Gül Ş, Bilguvar K, Wu Y, Özhan A, Aydın C, Başak AN, Trusso MA, Goracci A, Fallerini C, Renieri A, Casanova JL, Itan Y, Atbaşoğlu CE, Saka MC, Kavaklı İ, Özçelik T. Human CRY1 variants associate with attention deficit/hyperactivity disorder. Journal Of Clinical Investigation 2020, 130: 3885-3900. PMID: 32538895, PMCID: PMC7324179, DOI: 10.1172/jci135500.Peer-Reviewed Original ResearchConceptsAttention-deficit/hyperactivity disorderDeficit/hyperactivity disorderHyperactivity disorderMajor depressive disorderSleep phase disorderGenotype-phenotype correlation analysisAdult EuropeansDepressive disorderIndependent cohortTherapeutic markersFunctional alterationsBehavioral symptomsInsomniaExome sequencingPhenome-wide association studyDisordersPhase disorderPatientsPsychiatric phenotypesMechanistic linkAffected familyArrhythmic phenotypeMolecular rhythmsPhenotypeAnxiety
2019
Mutations in TFAP2B and previously unimplicated genes of the BMP, Wnt, and Hedgehog pathways in syndromic craniosynostosis
Timberlake AT, Jin SC, Nelson-Williams C, Wu R, Furey CG, Islam B, Haider S, Loring E, Galm A, Steinbacher D, Larysz D, Staffenberg D, Flores R, Rodriguez E, Boggon T, Persing J, Lifton R, Lifton RP, Gunel M, Mane S, Bilguvar K, Gerstein M, Loring E, Nelson-Williams C, Lopez F, Knight J. Mutations in TFAP2B and previously unimplicated genes of the BMP, Wnt, and Hedgehog pathways in syndromic craniosynostosis. Proceedings Of The National Academy Of Sciences Of The United States Of America 2019, 116: 15116-15121. PMID: 31292255, PMCID: PMC6660739, DOI: 10.1073/pnas.1902041116.Peer-Reviewed Original ResearchMeSH KeywordsAdolescentAlpha CateninChildChild, PreschoolCraniosynostosesExomeExome SequencingFemaleGene ExpressionGlypicansHistone AcetyltransferasesHumansMaleMutationNuclear ProteinsPedigreeRisk AssessmentSignal TransductionSkullSOXC Transcription FactorsTranscription Factor AP-2Zinc Finger Protein Gli2ConceptsRare damaging mutationsSyndromic craniosynostosisCongenital anomaliesDamaging mutationsSyndromic casesExome sequencingAdditional congenital anomaliesFrequent congenital anomaliesDamaging de novo mutationsNeural crest cell migrationDamaging de novoCrest cell migrationCS patientsMutation burdenChromatin modifiersSubsequent childrenTranscription factorsDe novo mutationsCS casesCS geneHedgehog pathwayDisease locusPremature fusionFunction mutationsCraniosynostosis
2018
Mutations in Chromatin Modifier and Ephrin Signaling Genes in Vein of Galen Malformation
Duran D, Zeng X, Jin SC, Choi J, Nelson-Williams C, Yatsula B, Gaillard J, Furey CG, Lu Q, Timberlake AT, Dong W, Sorscher MA, Loring E, Klein J, Allocco A, Hunt A, Conine S, Karimy JK, Youngblood MW, Zhang J, DiLuna ML, Matouk CC, Mane S, Tikhonova IR, Castaldi C, López-Giráldez F, Knight J, Haider S, Soban M, Alper SL, Komiyama M, Ducruet AF, Zabramski JM, Dardik A, Walcott BP, Stapleton CJ, Aagaard-Kienitz B, Rodesch G, Jackson E, Smith ER, Orbach DB, Berenstein A, Bilguvar K, Vikkula M, Gunel M, Lifton RP, Kahle KT. Mutations in Chromatin Modifier and Ephrin Signaling Genes in Vein of Galen Malformation. Neuron 2018, 101: 429-443.e4. PMID: 30578106, PMCID: PMC10292091, DOI: 10.1016/j.neuron.2018.11.041.Peer-Reviewed Original ResearchConceptsChromatin modifiersVascular developmentSpecification of arteriesDeep venous systemNormal vascular developmentParent-offspring triosSignaling GenesGalen malformationDamaging mutationsGenesMutationsEssential roleArterio-venous malformationsCutaneous vascular abnormalitiesNovo mutationsExome sequencingDisease biologyIncomplete penetranceVariable expressivityVascular abnormalitiesVenous systemMutation carriersArterial bloodMutation burdenClinical implicationsDe Novo Mutation in Genes Regulating Neural Stem Cell Fate in Human Congenital Hydrocephalus
Furey CG, Choi J, Jin SC, Zeng X, Timberlake AT, Nelson-Williams C, Mansuri MS, Lu Q, Duran D, Panchagnula S, Allocco A, Karimy JK, Khanna A, Gaillard JR, DeSpenza T, Antwi P, Loring E, Butler WE, Smith ER, Warf BC, Strahle JM, Limbrick DD, Storm PB, Heuer G, Jackson EM, Iskandar BJ, Johnston JM, Tikhonova I, Castaldi C, López-Giráldez F, Bjornson RD, Knight JR, Bilguvar K, Mane S, Alper SL, Haider S, Guclu B, Bayri Y, Sahin Y, Apuzzo MLJ, Duncan CC, DiLuna ML, Günel M, Lifton RP, Kahle KT. De Novo Mutation in Genes Regulating Neural Stem Cell Fate in Human Congenital Hydrocephalus. Neuron 2018, 99: 302-314.e4. PMID: 29983323, PMCID: PMC7839075, DOI: 10.1016/j.neuron.2018.06.019.Peer-Reviewed Original ResearchConceptsCongenital hydrocephalusNeural stem cell fateHuman congenital hydrocephalusDamaging de novoCerebrospinal fluid homeostasisSubstantial morbidityCH patientsTherapeutic ramificationsSignificant burdenBrain ventriclesCH pathogenesisNeural tube developmentFluid homeostasisDe novo mutationsExome sequencingAdditional probandsHydrocephalusPathogenesisNovo mutationsNovo duplicationProbandsDe novoCell fateMorbidityPatients
2017
Contribution of rare inherited and de novo variants in 2,871 congenital heart disease probands
Jin SC, Homsy J, Zaidi S, Lu Q, Morton S, DePalma SR, Zeng X, Qi H, Chang W, Sierant MC, Hung WC, Haider S, Zhang J, Knight J, Bjornson RD, Castaldi C, Tikhonoa IR, Bilguvar K, Mane SM, Sanders SJ, Mital S, Russell MW, Gaynor JW, Deanfield J, Giardini A, Porter GA, Srivastava D, Lo CW, Shen Y, Watkins WS, Yandell M, Yost HJ, Tristani-Firouzi M, Newburger JW, Roberts AE, Kim R, Zhao H, Kaltman JR, Goldmuntz E, Chung WK, Seidman JG, Gelb BD, Seidman CE, Lifton RP, Brueckner M. Contribution of rare inherited and de novo variants in 2,871 congenital heart disease probands. Nature Genetics 2017, 49: 1593-1601. PMID: 28991257, PMCID: PMC5675000, DOI: 10.1038/ng.3970.Peer-Reviewed Original ResearchMeSH KeywordsAdultAutistic DisorderCardiac MyosinsCase-Control StudiesChildExomeFemaleGene ExpressionGenetic Predisposition to DiseaseGenome-Wide Association StudyGrowth Differentiation Factor 1Heart Defects, CongenitalHeterozygoteHigh-Throughput Nucleotide SequencingHomozygoteHumansMaleMutationMyosin Heavy ChainsPedigreeRiskVascular Endothelial Growth Factor Receptor-3De novo mutations in inhibitors of Wnt, BMP, and Ras/ERK signaling pathways in non-syndromic midline craniosynostosis
Timberlake AT, Furey CG, Choi J, Nelson-Williams C, Loring E, Galm A, Kahle K, Steinbacher D, Larysz D, Persing J, Lifton R, Bilguvar K, Mane S, Tikhonova I, Castaldi C, Knight J. De novo mutations in inhibitors of Wnt, BMP, and Ras/ERK signaling pathways in non-syndromic midline craniosynostosis. Proceedings Of The National Academy Of Sciences Of The United States Of America 2017, 114: e7341-e7347. PMID: 28808027, PMCID: PMC5584457, DOI: 10.1073/pnas.1709255114.Peer-Reviewed Original ResearchConceptsBone morphogenetic proteinRas/ERKDe novo mutationsNovo mutationsRas/ERK pathwayDamaging de novo mutationsHigh locus heterogeneityRare syndromic diseaseCommon risk variantsInhibitor of WntSyndromic craniosynostosesNew genesParent-offspring triosSyndromic diseaseMorphogenetic proteinsNegative regulatorERK pathwayMore cranial suturesGenesMidline craniosynostosisRisk variantsWntLocus heterogeneityMutationsExome sequencing
2016
ACOX2 deficiency: A disorder of bile acid synthesis with transaminase elevation, liver fibrosis, ataxia, and cognitive impairment
Vilarinho S, Sari S, Mazzacuva F, Bilgüvar K, Esendagli-Yilmaz G, Jain D, Akyol G, Dalgiç B, Günel M, Clayton PT, Lifton RP. ACOX2 deficiency: A disorder of bile acid synthesis with transaminase elevation, liver fibrosis, ataxia, and cognitive impairment. Proceedings Of The National Academy Of Sciences Of The United States Of America 2016, 113: 11289-11293. PMID: 27647924, PMCID: PMC5056113, DOI: 10.1073/pnas.1613228113.Peer-Reviewed Original ResearchConceptsAcyl-CoA oxidase 2Liver fibrosisCognitive impairmentElevated transaminase levelsTreatable inborn errorsBile acid synthesisBile acid intermediatesBile acid biosynthesisTransaminase elevationTransaminase levelsMarked elevationMild ataxiaBile acidsPatient's liverOxidase 2Acyl-CoA oxidaseOld maleBranched chain acyl-CoA oxidaseInborn errorsExome sequencingPremature termination mutationsBranched-chain fatty acidsFibrosisAtaxiaLiverFamilial occurrence of brain arteriovenous malformation: a novel ACVRL1 mutation detected by whole exome sequencing.
Yılmaz B, Toktaş ZO, Akakın A, Işık S, Bilguvar K, Kılıç T, Günel M. Familial occurrence of brain arteriovenous malformation: a novel ACVRL1 mutation detected by whole exome sequencing. Journal Of Neurosurgery 2016, 126: 1879-1883. PMID: 27611203, DOI: 10.3171/2016.6.jns16665.Peer-Reviewed Original ResearchConceptsBrain arteriovenous malformationsHereditary hemorrhagic telangiectasiaWhole-exome sequencingArteriovenous malformationsExome sequencingWhole-exome sequencing analysisSpinal arteriovenous malformationsDiagnostic classification schemesExome sequencing analysisComprehensive genomic characterizationConclusion Study resultsCranial MRIDirect Sanger sequencingHemorrhagic telangiectasiaBlood samplesFamilial occurrenceHeterozygous mutationsACVRL1 mutationsPatientsThree SiblingsFourth siblingVariant segregationSanger sequencingMalformationsSiblingsTwo locus inheritance of non-syndromic midline craniosynostosis via rare SMAD6 and common BMP2 alleles
Timberlake AT, Choi J, Zaidi S, Lu Q, Nelson-Williams C, Brooks ED, Bilguvar K, Tikhonova I, Mane S, Yang JF, Sawh-Martinez R, Persing S, Zellner EG, Loring E, Chuang C, Galm A, Hashim PW, Steinbacher DM, DiLuna ML, Duncan CC, Pelphrey KA, Zhao H, Persing JA, Lifton RP. Two locus inheritance of non-syndromic midline craniosynostosis via rare SMAD6 and common BMP2 alleles. ELife 2016, 5: e20125. PMID: 27606499, PMCID: PMC5045293, DOI: 10.7554/elife.20125.Peer-Reviewed Original ResearchConceptsMidline craniosynostosisInhibitor of BMPCommon variantsDamaging de novoGenetic interactionsPhenotypic variationParent-offspring triosEpistatic interactionsGenetic basisOsteoblast differentiationLocus inheritanceAnalysis of linkageDe novoExome sequencingIncomplete penetranceMutationsTransmitted mutationsGenomic characterization of sarcomatoid transformation in clear cell renal cell carcinoma
Bi M, Zhao S, Said JW, Merino MJ, Adeniran AJ, Xie Z, Nawaf CB, Choi J, Belldegrun AS, Pantuck AJ, Kluger HM, Bilgüvar K, Lifton RP, Shuch B. Genomic characterization of sarcomatoid transformation in clear cell renal cell carcinoma. Proceedings Of The National Academy Of Sciences Of The United States Of America 2016, 113: 2170-2175. PMID: 26864202, PMCID: PMC4776463, DOI: 10.1073/pnas.1525735113.Peer-Reviewed Original ResearchMeSH KeywordsAgedCarcinoma, Renal CellCell DedifferentiationDNA Mismatch RepairDNA-Binding ProteinsExomeFemaleGenes, p53HumansKidney NeoplasmsLoss of HeterozygosityMaleMiddle AgedMutationNuclear ProteinsOncogenesPolymorphism, Single NucleotidePrognosisTranscription FactorsTumor Suppressor ProteinsUbiquitin ThiolesteraseConceptsClear cell renal cell carcinomaCell renal cell carcinomaRenal cell carcinomaSarcomatoid elementsCarcinomatous elementsCell carcinomaSomatic single nucleotide variantsVon Hippel-Lindau tumor suppressorPoor-prognosis cancerTreatment of patientsTumor protein p53 (TP53) mutationsMismatch repair deficiencyRich interaction domain 1ASarcomatoid featuresPoor prognosisUnknown pathogenesisPolybromo-1TP53 mutationsP53 mutationsSarcomatoid transformationPan-cancer genesExome sequencingTumorsRepair deficiencyProtein 1
2015
De novo mutations in congenital heart disease with neurodevelopmental and other congenital anomalies
Homsy J, Zaidi S, Shen Y, Ware JS, Samocha KE, Karczewski KJ, DePalma SR, McKean D, Wakimoto H, Gorham J, Jin SC, Deanfield J, Giardini A, Porter GA, Kim R, Bilguvar K, López-Giráldez F, Tikhonova I, Mane S, Romano-Adesman A, Qi H, Vardarajan B, Ma L, Daly M, Roberts AE, Russell MW, Mital S, Newburger JW, Gaynor JW, Breitbart RE, Iossifov I, Ronemus M, Sanders SJ, Kaltman JR, Seidman JG, Brueckner M, Gelb BD, Goldmuntz E, Lifton RP, Seidman CE, Chung WK. De novo mutations in congenital heart disease with neurodevelopmental and other congenital anomalies. Science 2015, 350: 1262-1266. PMID: 26785492, PMCID: PMC4890146, DOI: 10.1126/science.aac9396.Peer-Reviewed Original ResearchConceptsCongenital anomaliesNeurodevelopmental disabilitiesCongenital heart disease patientsDe novo mutationsExtracardiac congenital anomaliesImproved prognostic assessmentEarly therapeutic interventionHeart disease patientsCongenital heart diseaseNovo mutationsCHD patientsDisease patientsHeart diseasePrognostic assessmentCHD casesTherapeutic interventionsPatientsExome sequencingCHDParent-offspring triosMultiple mutationsGenetic contributionMutationsChromatin modificationsTranscriptional regulationClinical, Electrodiagnostic, and Genetic Features of Tangier Disease in an Adolescent Girl with Presentation of Peripheral Neuropathy
Per H, Canpolat M, Bayram A, Ulgen E, Baran B, Kardas F, Gumus H, Kumandas S, Bilguvar K, Çağlayan A. Clinical, Electrodiagnostic, and Genetic Features of Tangier Disease in an Adolescent Girl with Presentation of Peripheral Neuropathy. Neuropediatrics 2015, 46: 420-423. PMID: 26479764, DOI: 10.1055/s-0035-1565275.Peer-Reviewed Original ResearchConceptsPeripheral neuropathyTangier diseaseLipid electrophoresisHigh-density lipoprotein levelsPlasma high-density lipoprotein levelsCassette transporter 1 (ABCA1) geneWhole-exome sequencingLike neuropathyPediatric patientsFemale patientsHDL cholesterolLipoprotein levelsSystemic findingsHDL levelsDifferential diagnosisAsymptomatic sisterNeuropathyPatientsTransporter 1 geneDiagnostic testsExome sequencingAdolescent girlsDiagnosisGenetic featuresGenetic diagnosisMutation in <i>GM2A</i> Leads to a Progressive Chorea-dementia Syndrome
Salih M, Seidahmed M, Khashab H, Hamad M, Bosley T, Burn S, Myers A, Landsverk M, Crotwell P, Bilguvar K, Mane S, Kruer M. Mutation in GM2A Leads to a Progressive Chorea-dementia Syndrome. Tremor And Other Hyperkinetic Movements 2015, 5: 306. DOI: 10.5334/tohm.246.Peer-Reviewed Original ResearchMacular cherry-red spotsChildhood-onset choreaCherry-red spotWhole-exome sequencingMacular findingsProgressive choreaIntractable seizuresHomozygous missense mutationNeurodegenerative courseProfound hypotoniaRare formVolitional movementPhenotypic spectrumChoreaExome sequencingGM2 gangliosidosisHyperacusisPatientsSaudi familyNeurodegenerative disease genesMissense mutationsGangliosidosisHomozygosity mappingVariant phenotypesMutationsMutation in GM2A Leads to a Progressive Chorea-dementia Syndrome
Salih MA, Seidahmed MZ, Khashab H, Hamad MH, Bosley TM, Burn S, Myers A, Landsverk ML, Crotwell PL, Bilguvar K, Mane S, Kruer MC. Mutation in GM2A Leads to a Progressive Chorea-dementia Syndrome. Tremor And Other Hyperkinetic Movements 2015, 5: 306. PMID: 26203402, PMCID: PMC4502426, DOI: 10.7916/d8d21wq0.Peer-Reviewed Original ResearchMacular cherry-red spotsChildhood-onset choreaCherry-red spotWhole-exome sequencingMacular findingsProgressive choreaIntractable seizuresHomozygous missense mutationNeurodegenerative courseProfound hypotoniaRare formVolitional movementPhenotypic spectrumChoreaExome sequencingGM2 gangliosidosisHyperacusisPatientsSaudi familyNeurodegenerative disease genesMissense mutationsDisease-associated genesGangliosidosisHomozygosity mappingVariant phenotypesExome sequencing links mutations in PARN and RTEL1 with familial pulmonary fibrosis and telomere shortening
Stuart BD, Choi J, Zaidi S, Xing C, Holohan B, Chen R, Choi M, Dharwadkar P, Torres F, Girod CE, Weissler J, Fitzgerald J, Kershaw C, Klesney-Tait J, Mageto Y, Shay JW, Ji W, Bilguvar K, Mane S, Lifton RP, Garcia CK. Exome sequencing links mutations in PARN and RTEL1 with familial pulmonary fibrosis and telomere shortening. Nature Genetics 2015, 47: 512-517. PMID: 25848748, PMCID: PMC4414891, DOI: 10.1038/ng.3278.Peer-Reviewed Original ResearchMeSH KeywordsAdultAgedAged, 80 and overAmino Acid SequenceCase-Control StudiesCells, CulturedDNA HelicasesDNA Mutational AnalysisExomeExoribonucleasesFemaleGenetic Association StudiesGenetic Predisposition to DiseaseHumansIdiopathic Pulmonary FibrosisLeukocytesLod ScoreMaleMiddle AgedMolecular Sequence DataPedigreeTelomereTelomere Shortening