2024
Leveraging altered lipid metabolism in treating B cell malignancies
Lee J, Mani A, Shin M, Krauss R. Leveraging altered lipid metabolism in treating B cell malignancies. Progress In Lipid Research 2024, 95: 101288. PMID: 38964473, PMCID: PMC11347096, DOI: 10.1016/j.plipres.2024.101288.Peer-Reviewed Original ResearchB-cell malignanciesMalignant B cellsB cell receptorAltered lipid metabolismLipid metabolismOncogenic signalingB cellsTreating B-cell malignanciesReprogram lipid metabolismLipid raft integrityB-cell receptor activationHeterogeneous blood cancerImprove risk stratificationUncontrolled cell proliferationB cell activationRaft integrityLipid raftsMYC translocationCytotoxic therapyHeightened metabolic demandsGenetic driversSignaling cascadesMalignant subtypeRisk stratificationObese individualsDependence of lymphopoiesis on efficient β-catenin degradation
Cosgun K, Jumaa H, Robinson M, Klemm L, Oulghazi S, Fonseca-Arce D, Xu L, Xiao G, Khanduja D, Chan L, Lee J, Kume K, Song J, Chan W, Chen J, Taketo M, Kothari S. Dependence of lymphopoiesis on efficient β-catenin degradation. The Journal Of Immunology 2024, 212: 1195_4936-1195_4936. DOI: 10.4049/jimmunol.212.supp.1195.4936.Peer-Reviewed Original ResearchIkaros zinc fingersLymphoid cellsB-cateninChIP-seq analysisSuppression of MYC expressionRegulate lineage specificationInduce cell deathConstitutively low levelsDeletion of ApcChIP-seqTcf factorsZinc fingerProteasomal degradationBinding motifNucleosome remodelingDestruction complexSpecific genesWnt/b-catenin pathwayLineage specificationCell deathMYC expressionSuperenhancersLymphoid developmentEpithelial lineageEpithelial cellsDynamic recruitment of inhibitory complexes by CD25 controls B-cell development and selection
Sun R, Lee J, Robinson M, Kume K, Ma N, Cosgun K, Chan L, Antoshkina I, Khanduja D, Leveille E, Katz S, Vaidehi N, Müschen M. Dynamic recruitment of inhibitory complexes by CD25 controls B-cell development and selection. The Journal Of Immunology 2024, 212: 1253_4618-1253_4618. DOI: 10.4049/jimmunol.212.supp.1253.4618.Peer-Reviewed Original ResearchBCR signalingInhibitory complexInhibitory phosphatasesPositively charged tailITIM-bearing receptorsInitiation of BCR signalingNegatively charged residuesB cell developmentSH2 domainPhosphatase domainCytoplasmic tailITIM motifsGenetic studiesPhosphatase SHP1Co-IPBCR complexDynamic recruitmentIL2 receptorCell surfaceB cellsSHP1Surface-expressedTernary complexClonal expansionPhosphatase
2023
Optogenetic Control of Oncogenic Signaling in B-Cell Malignancies
Kume K, Lee J, Cheng Z, Robinson M, Leveille E, Cosgun K, Chan L, Feng Y, Arce D, Khanduja D, Toomre D, Müschen M. Optogenetic Control of Oncogenic Signaling in B-Cell Malignancies. Blood 2023, 142: 4138. DOI: 10.1182/blood-2023-190926.Peer-Reviewed Original ResearchB-cell malignanciesB-cell lymphomaMature B-cell lymphomasB cell deathB cellsB cell developmentGenetic deletionMantle cell lymphomaNF-kB signalingBCR signal inhibitorsB cell precursorsCell of originCell viabilityChronic active BCRB cell survivalB cell receptor signalsHodgkin's diseaseMultiple myelomaNormal B cell developmentPlasma cellsBtk tyrosine kinaseCell lymphomaBurkitt's lymphomaNF-kBSmall molecule inhibitorsRepurposing GSK3B Small Molecule Inhibitors for Refractory Lymphoid Malignancies
Cosgun K, Robinson M, Oulghazi S, Xu L, Xiao G, Chan L, Lee J, Kume K, Leveille E, Arce D, Khanduja D, Feldhahn N, Song J, Chan W, Chen J, Taketo M, Schjerven H, Jellusova J, Kothari S, Davids M, Müschen M. Repurposing GSK3B Small Molecule Inhibitors for Refractory Lymphoid Malignancies. Blood 2023, 142: 2818. DOI: 10.1182/blood-2023-190522.Peer-Reviewed Original ResearchFavorable safety profileSmall molecule inhibitorsT-lymphoid malignancyΒ-catenin degradationLymphoid malignanciesΒ-cateninInteractome studiesSafety profileClinical trialsMolecule inhibitorsLow nanomolar concentrationsΒ-catenin accumulationSolid tumorsRefractory B-cell malignanciesCell deathPK/PD profilesZinc finger proteinRefractory lymphoid malignanciesChIP-seq analysisPhase 2 trialMYC target genesT-cell lymphomaColony formationRapid nuclear accumulationWnt/β-catenin pathwayDynamic Recruitment of Inhibitory Complexes Controls Oncogenic Signaling in B-Cell Malignancies
Sun R, Lee J, Robinson M, Kume K, Ma N, Cosgun K, Chan L, Antoshkina I, Khanduja D, Leveille E, Katz S, Chen J, Paietta E, Vaidehi N, Müschen M. Dynamic Recruitment of Inhibitory Complexes Controls Oncogenic Signaling in B-Cell Malignancies. Blood 2023, 142: 719. DOI: 10.1182/blood-2023-189742.Peer-Reviewed Original ResearchB-cell malignanciesB-cell lymphomaHigher serum levelsMature B-cell lymphomasSoluble CD25Serum levelsOncogenic signalingMouse modelB cellsAggressive B-cell lymphomasAcceleration of diseaseActivation of inhibitoryPoor clinical outcomeCD25 surface expressionB cell subsetsRole of CD25Patient-derived xenograftsB cell populationsB-cell receptor signalingB-cell leukemiaGenetic mouse modelsKnockin mouse modelCell deathMature B cell populationClinical outcomes
2021
PON2 subverts metabolic gatekeeper functions in B cells to promote leukemogenesis
Pan L, Hong C, Chan LN, Xiao G, Malvi P, Robinson ME, Geng H, Reddy ST, Lee J, Khairnar V, Cosgun KN, Xu L, Kume K, Sadras T, Wang S, Wajapeyee N, Müschen M. PON2 subverts metabolic gatekeeper functions in B cells to promote leukemogenesis. Proceedings Of The National Academy Of Sciences Of The United States Of America 2021, 118: e2016553118. PMID: 33531346, PMCID: PMC7896313, DOI: 10.1073/pnas.2016553118.Peer-Reviewed Original ResearchConceptsTransplant recipient miceDNA double-strand breaksNormal B cell developmentDouble-strand breaksB cell developmentGenetic deletionB cellsLymphoid transcription factorsGlucose transporter GLUT1Gatekeeper functionGlucose uptakeRecipient miceTranscription factorsSomatic recombinationSynthetic lethalityB-cell acute lymphoblastic leukemiaCell developmentMetabolic gatekeeperRefractory B-ALLDeficient murineCell acute lymphoblastic leukemiaPoor clinical outcomeCell typesAcute lymphoblastic leukemiaGlucose transport
2020
IFITM3 functions as a PIP3 scaffold to amplify PI3K signalling in B cells
Lee J, Robinson ME, Ma N, Artadji D, Ahmed MA, Xiao G, Sadras T, Deb G, Winchester J, Cosgun KN, Geng H, Chan LN, Kume K, Miettinen TP, Zhang Y, Nix MA, Klemm L, Chen CW, Chen J, Khairnar V, Wiita AP, Thomas-Tikhonenko A, Farzan M, Jung JU, Weinstock DM, Manalis SR, Diamond MS, Vaidehi N, Müschen M. IFITM3 functions as a PIP3 scaffold to amplify PI3K signalling in B cells. Nature 2020, 588: 491-497. PMID: 33149299, PMCID: PMC8087162, DOI: 10.1038/s41586-020-2884-6.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntigens, CD19B-LymphocytesCell Transformation, NeoplasticFemaleGerminal CenterHumansIntegrinsMembrane MicrodomainsMembrane ProteinsMiceMice, Inbred C57BLMice, Inbred NODModels, MolecularPhosphatidylinositol 3-KinasesPhosphatidylinositol PhosphatesPhosphorylationReceptors, Antigen, B-CellRNA-Binding ProteinsSignal TransductionConceptsPI3KCell leukemiaAntiviral effector functionsAntigen-specific antibodiesInterferon-induced transmembrane proteinsIFITM3 functionDevelopment of leukemiaCell surfacePoor outcomeOncogenic PI3KClinical cohortEffector functionsGerminal centersMouse modelB cellsExpression of IFITM3Malignant transformationAccumulation of PIP3PI3K signalsCell receptorNormal numbersLeukemiaDefective expressionEndosomal proteinIFITM3Signalling input from divergent pathways subverts B cell transformation
Chan LN, Murakami MA, Robinson ME, Caeser R, Sadras T, Lee J, Cosgun KN, Kume K, Khairnar V, Xiao G, Ahmed MA, Aghania E, Deb G, Hurtz C, Shojaee S, Hong C, Pölönen P, Nix MA, Chen Z, Chen CW, Chen J, Vogt A, Heinäniemi M, Lohi O, Wiita AP, Izraeli S, Geng H, Weinstock DM, Müschen M. Signalling input from divergent pathways subverts B cell transformation. Nature 2020, 583: 845-851. PMID: 32699415, PMCID: PMC7394729, DOI: 10.1038/s41586-020-2513-4.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsB-LymphocytesCell Line, TumorCell Transformation, NeoplasticEnzyme ActivationExtracellular Signal-Regulated MAP KinasesFemaleHumansLeukemia, B-CellMiceProtein Tyrosine Phosphatase, Non-Receptor Type 6Proto-Oncogene Proteins c-bcl-6Proto-Oncogene Proteins c-mycSignal TransductionSTAT5 Transcription FactorConceptsPre-B cell receptorPrincipal oncogenic driverDivergent pathwaysSignal transduction proteinsPro-B cell stageSingle-cell mutationTranscription factor MYCOncogenic driversDivergent signaling pathwaysSingle oncogenic pathwayCentral oncogenic driverMore mature cellsGenetic reactivationTranscriptional programsB-cell transformationProtein kinasePathway componentsERK activationIndividual mutationsOncogenic STAT5Signaling pathwaysCell transformationCytokine receptorsGenetic lesionsDivergent circuits
2018
Simultaneous Targeting of PARP1 and RAD52 Triggers Dual Synthetic Lethality in BRCA-Deficient Tumor Cells
Sullivan-Reed K, Bolton-Gillespie E, Dasgupta Y, Langer S, Siciliano M, Nieborowska-Skorska M, Hanamshet K, Belyaeva EA, Bernhardy AJ, Lee J, Moore M, Zhao H, Valent P, Matlawska-Wasowska K, Müschen M, Bhatia S, Bhatia R, Johnson N, Wasik MA, Mazin AV, Skorski T. Simultaneous Targeting of PARP1 and RAD52 Triggers Dual Synthetic Lethality in BRCA-Deficient Tumor Cells. Cell Reports 2018, 23: 3127-3136. PMID: 29898385, PMCID: PMC6082171, DOI: 10.1016/j.celrep.2018.05.034.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBRCA1 ProteinBRCA2 ProteinDNA RepairFemaleFusion Proteins, bcr-ablHomologous RecombinationHumansImatinib MesylateKaplan-Meier EstimateLeukemia, Myeloid, AcuteMaleMiceMice, Inbred NODMice, KnockoutPhthalazinesPiperazinesPoly (ADP-Ribose) Polymerase-1Rad52 DNA Repair and Recombination ProteinSynthetic Lethal MutationsTumor Suppressor p53-Binding Protein 1ConceptsTumor cellsBRCA-deficient tumor cellsSimultaneous targetingBRCA-deficient tumorsClinical trialsProlonged latencyImmunodeficient miceTherapeutic outcomesBRCA1-deficient tumorsPARP inhibitorsBRCA-deficient cellsMinimal toxicitySynergistic activitySynthetic lethal effectTumorsNormal cellsPARPiSynthetic lethalityInhibitorsLethal effectsCellsDominant negative mutantSynergistic accumulationMalignancyTargetingB-Cell-Specific Diversion of Glucose Carbon Utilization Reveals a Unique Vulnerability in B Cell Malignancies
Xiao G, Chan LN, Klemm L, Braas D, Chen Z, Geng H, Zhang QC, Aghajanirefah A, Cosgun KN, Sadras T, Lee J, Mirzapoiazova T, Salgia R, Ernst T, Hochhaus A, Jumaa H, Jiang X, Weinstock DM, Graeber TG, Müschen M. B-Cell-Specific Diversion of Glucose Carbon Utilization Reveals a Unique Vulnerability in B Cell Malignancies. Cell 2018, 173: 470-484.e18. PMID: 29551267, PMCID: PMC6284818, DOI: 10.1016/j.cell.2018.02.048.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsB-LymphocytesCarbonCell Line, TumorCell SurvivalGlucoseGlucosephosphate DehydrogenaseGlycolysisHumansIkaros Transcription FactorMiceMice, Inbred C57BLMice, Inbred NODOxidative StressPAX5 Transcription FactorPentose Phosphate PathwayPrecursor Cell Lymphoblastic Leukemia-LymphomaProtein Phosphatase 2Proto-Oncogene Proteins c-bcl-2Transcription, GeneticConceptsPentose phosphate pathwayCarbon utilizationSerine/threonine protein phosphatase 2AB-cell transcription factor PAX5Transcription factor Pax5Favor of glycolysisSmall molecule inhibitionPhosphatase 2ATranscriptional repressionRedox homeostasisOncogenic transformationTumor suppressorMolecule inhibitionPP2AGenetic studiesPhosphate pathwayB cell activationEssential roleB-cell malignanciesCell malignanciesB cellsAntioxidant protectionOxidative stressB-cell tumorsCell activation
2017
Metabolic gatekeeper function of B-lymphoid transcription factors
Chan LN, Chen Z, Braas D, Lee JW, Xiao G, Geng H, Cosgun KN, Hurtz C, Shojaee S, Cazzaniga V, Schjerven H, Ernst T, Hochhaus A, Kornblau SM, Konopleva M, Pufall MA, Cazzaniga G, Liu GJ, Milne TA, Koeffler HP, Ross TS, Sánchez-García I, Borkhardt A, Yamamoto KR, Dickins RA, Graeber TG, Müschen M. Metabolic gatekeeper function of B-lymphoid transcription factors. Nature 2017, 542: 479-483. PMID: 28192788, PMCID: PMC5621518, DOI: 10.1038/nature21076.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine TriphosphateAMP-Activated Protein Kinase KinasesAMP-Activated Protein KinasesAnimalsB-LymphocytesCarcinogenesisCarrier ProteinsCell DeathChromatin ImmunoprecipitationCitric Acid CycleDisease Models, AnimalEnergy MetabolismFemaleGene Expression Regulation, NeoplasticGlucocorticoidsGlucoseHumansIkaros Transcription FactorMiceMice, TransgenicPAX5 Transcription FactorPrecursor B-Cell Lymphoblastic Leukemia-LymphomaProtein Serine-Threonine KinasesPyruvic AcidReceptor, Cannabinoid, CB2Receptors, GlucocorticoidSequence Analysis, RNATranscription Factors
2015
Signalling thresholds and negative B-cell selection in acute lymphoblastic leukaemia
Chen Z, Shojaee S, Buchner M, Geng H, Lee JW, Klemm L, Titz B, Graeber TG, Park E, Tan YX, Satterthwaite A, Paietta E, Hunger SP, Willman CL, Melnick A, Loh ML, Jung JU, Coligan JE, Bolland S, Mak TW, Limnander A, Jumaa H, Reth M, Weiss A, Lowell CA, Müschen M. Signalling thresholds and negative B-cell selection in acute lymphoblastic leukaemia. Nature 2015, 521: 357-361. PMID: 25799995, PMCID: PMC4441554, DOI: 10.1038/nature14231.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid MotifsAnimalsAntigens, CDB-LymphocytesCell DeathCell Line, TumorCell Transformation, NeoplasticDisease Models, AnimalDrug Resistance, NeoplasmEnzyme ActivationFemaleFusion Proteins, bcr-ablGene DeletionHumansInositol Polyphosphate 5-PhosphatasesIntracellular Signaling Peptides and ProteinsMiceMice, Inbred NODMice, SCIDPhosphatidylinositol-3,4,5-Trisphosphate 5-PhosphatasesPhosphoric Monoester HydrolasesPlatelet Endothelial Cell Adhesion Molecule-1Precursor Cell Lymphoblastic Leukemia-LymphomaPrecursor Cells, B-LymphoidProtein Tyrosine Phosphatase, Non-Receptor Type 6Protein-Tyrosine KinasesReceptors, Antigen, B-CellReceptors, ImmunologicSignal TransductionSyk KinaseTyrosineXenograft Model Antitumor AssaysSelf-Enforcing Feedback Activation between BCL6 and Pre-B Cell Receptor Signaling Defines a Distinct Subtype of Acute Lymphoblastic Leukemia
Geng H, Hurtz C, Lenz KB, Chen Z, Baumjohann D, Thompson S, Goloviznina NA, Chen WY, Huan J, LaTocha D, Ballabio E, Xiao G, Lee JW, Deucher A, Qi Z, Park E, Huang C, Nahar R, Kweon SM, Shojaee S, Chan LN, Yu J, Kornblau SM, Bijl JJ, Ye BH, Ansel KM, Paietta E, Melnick A, Hunger SP, Kurre P, Tyner JW, Loh ML, Roeder RG, Druker BJ, Burger JA, Milne TA, Chang BH, Müschen M. Self-Enforcing Feedback Activation between BCL6 and Pre-B Cell Receptor Signaling Defines a Distinct Subtype of Acute Lymphoblastic Leukemia. Cancer Cell 2015, 27: 409-425. PMID: 25759025, PMCID: PMC4618684, DOI: 10.1016/j.ccell.2015.02.003.Peer-Reviewed Original ResearchMeSH KeywordsBasic Helix-Loop-Helix Transcription FactorsClinical Trials as TopicDNA-Binding ProteinsGene Expression Regulation, NeoplasticHumansIntracellular Signaling Peptides and ProteinsMolecular Sequence DataPhosphatidylinositol 3-KinasePre-B-Cell Leukemia Transcription Factor 1Precursor Cell Lymphoblastic Leukemia-LymphomaPrecursor Cells, B-LymphoidProtein-Tyrosine KinasesProto-Oncogene ProteinsProto-Oncogene Proteins c-bcl-6Signal TransductionSrc-Family KinasesSyk KinaseUp-RegulationConceptsDistinct subtypesPre-BCR signalingPatient-derived preVivo treatment studiesTreatment of patientsAcute lymphoblastic leukemiaTyrosine kinase inhibitorsPre-B cell receptor signalingCell receptor signalingLymphoblastic leukemiaClinical trialsTreatment studiesPre-BCR functionReceptor signalingKinase inhibitorsDistinct subsetsBCL6 expressionInduced activationFeedback activationSubtypesTyrosine kinaseBCL6SignalingActivationTranscriptional level
2013
Personalized synthetic lethality induced by targeting RAD52 in leukemias identified by gene mutation and expression profile
Cramer-Morales K, Nieborowska-Skorska M, Scheibner K, Padget M, Irvine DA, Sliwinski T, Haas K, Lee J, Geng H, Roy D, Slupianek A, Rassool FV, Wasik MA, Childers W, Copland M, Müschen M, Civin CI, Skorski T. Personalized synthetic lethality induced by targeting RAD52 in leukemias identified by gene mutation and expression profile. Blood 2013, 122: 1293-1304. PMID: 23836560, PMCID: PMC3744994, DOI: 10.1182/blood-2013-05-501072.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsApoptosisAptamers, PeptideBiomarkers, TumorBlotting, WesternBRCA1 ProteinBRCA2 ProteinCase-Control StudiesCell DifferentiationCell ProliferationDNA DamageDNA RepairEpigenomicsFusion Proteins, bcr-ablGene Expression ProfilingHumansLeukemia, Lymphocytic, Chronic, B-CellMiceMice, SCIDModels, MolecularMutationNeoplasm Recurrence, LocalNeoplastic Stem CellsOligonucleotide Array Sequence AnalysisPeptide FragmentsRad51 RecombinaseRad52 DNA Repair and Recombination ProteinReal-Time Polymerase Chain ReactionRecombination, GeneticReverse Transcriptase Polymerase Chain ReactionRNA, MessengerTumor Cells, CulturedXenograft Model Antitumor Assays
2012
Regulation of HOXA9 activity by predominant expression of DACH1 against C/EBPα and GATA-1 in myeloid leukemia with MLL-AF9.
Lee JW, Kim HS, Hwang J, Kim YH, Lim GY, Sohn WJ, Yoon SR, Kim JY, Park TS, Oh SH, Park KM, Choi SU, Ryoo ZY, Lee S. Regulation of HOXA9 activity by predominant expression of DACH1 against C/EBPα and GATA-1 in myeloid leukemia with MLL-AF9. Biochemical And Biophysical Research Communications 2012, 426: 299-305. PMID: 22902925, DOI: 10.1016/j.bbrc.2012.08.048.Peer-Reviewed Original ResearchDACH1 regulates cell cycle progression of myeloid cells through the control of cyclin D, Cdk 4/6 and p21Cip1.
Lee JW, Kim HS, Kim S, Hwang J, Kim YH, Lim GY, Sohn WJ, Yoon SR, Kim JY, Park TS, Park KM, Ryoo ZY, Lee S. DACH1 regulates cell cycle progression of myeloid cells through the control of cyclin D, Cdk 4/6 and p21Cip1. Biochemical And Biophysical Research Communications 2012, 420: 91-5. PMID: 22405764, DOI: 10.1016/j.bbrc.2012.02.120.Peer-Reviewed Original Research
2010
Processing and subcellular localization of ADAM2 in the Macaca fascicularis testis and sperm.
Kim E, Lee JW, Baek DC, Lee SR, Kim MS, Kim SH, Kim CS, Ryoo ZY, Kang HS, Chang KT. Processing and subcellular localization of ADAM2 in the Macaca fascicularis testis and sperm. Animal Reproduction Science 2010, 117: 155-9. PMID: 19443142, DOI: 10.1016/j.anireprosci.2009.04.002.Peer-Reviewed Original Research
2009
Detection of low-abundant novel transcripts in mouse hematopoietic stem cells.
Kim HS, Hwang J, Kim YH, Kim S, Lee JW, Kang HS, Kim KS, Ha JH, Chung JW, Chang KT, Ryoo ZY, Lee S. Detection of low-abundant novel transcripts in mouse hematopoietic stem cells. Molecular Genetics And Genomics : MGG 2009, 282: 363-70. PMID: 19585147, DOI: 10.1007/s00438-009-0469-z.Peer-Reviewed Original ResearchImportance of the porcine ADAM3 disintegrin domain in sperm-egg interaction.
Kim E, Park KE, Kim JS, Baek DC, Lee JW, Lee SR, Kim MS, Kim SH, Kim CS, Koo DB, Kang HS, Ryoo ZY, Chang KT. Importance of the porcine ADAM3 disintegrin domain in sperm-egg interaction. The Journal Of Reproduction And Development 2009, 55: 156-62. PMID: 19106482, DOI: 10.1262/jrd.20134.Peer-Reviewed Original Research