1999
Two-Microelectrode Voltage Clamp of Xenopus Oocytes: Voltage Errors and Compensation for Local Current Flow
Baumgartner W, Islas L, Sigworth F. Two-Microelectrode Voltage Clamp of Xenopus Oocytes: Voltage Errors and Compensation for Local Current Flow. Biophysical Journal 1999, 77: 1980-1991. PMID: 10512818, PMCID: PMC1300479, DOI: 10.1016/s0006-3495(99)77039-6.Peer-Reviewed Original Research
1992
[52] Analysis of nonstationary single-channel currents
Sigworth F, Zhou J. [52] Analysis of nonstationary single-channel currents. Methods In Enzymology 1992, 207: 746-762. PMID: 1382211, DOI: 10.1016/0076-6879(92)07054-r.Peer-Reviewed Original Research
1991
Open channel noise. VI. Analysis of amplitude histograms to determine rapid kinetic parameters
Heinemann S, Sigworth F. Open channel noise. VI. Analysis of amplitude histograms to determine rapid kinetic parameters. Biophysical Journal 1991, 60: 577-587. PMID: 1718467, PMCID: PMC1260101, DOI: 10.1016/s0006-3495(91)82087-2.Peer-Reviewed Original ResearchChanges in channel properties of acetylcholine receptors during the time course of thiol chemical modifications
Bouzat C, Barrantes F, Sigworth F. Changes in channel properties of acetylcholine receptors during the time course of thiol chemical modifications. Pflügers Archiv - European Journal Of Physiology 1991, 418: 51-61. PMID: 2041725, DOI: 10.1007/bf00370451.Peer-Reviewed Original ResearchMeSH KeywordsAcetylcholineAlkylationAnimalsCell LineDithiothreitolElectric ConductivityEthylmaleimideKineticsMusclesOxidation-ReductionReceptors, CholinergicConceptsSingle acetylcholine receptor channelsHigh agonist concentrationsPatch-clamp techniqueOpen timeConcentration of NEMSilent periodAcetylcholine receptorsN-ethylmaleimideAcetylcholine receptor channelsAgonist concentrationsChannel open probabilityReceptor channelsAChRMM N-ethylmaleimideTime of exposureRate of occurrenceSingle-channel currentsTime courseNEM treatmentControl receptorsReceptorsSignificant changesTreatmentShort openingsSlight reduction
1990
Open channel noise. V. Fluctuating barriers to ion entry in gramicidin A channels
Heinemann S, Sigworth F. Open channel noise. V. Fluctuating barriers to ion entry in gramicidin A channels. Biophysical Journal 1990, 57: 499-514. PMID: 1689592, PMCID: PMC1280744, DOI: 10.1016/s0006-3495(90)82566-2.Peer-Reviewed Original ResearchMeSH KeywordsAlkanesCations, MonovalentElectric ConductivityGlyceridesGramicidinIon ChannelsLipid BilayersMathematicsModels, BiologicalSqualene
1989
Purified, modified eel sodium channels are active in planar bilayers in the absence of activating neurotoxins.
Shenkel S, Cooper E, James W, Agnew W, Sigworth F. Purified, modified eel sodium channels are active in planar bilayers in the absence of activating neurotoxins. Proceedings Of The National Academy Of Sciences Of The United States Of America 1989, 86: 9592-9596. PMID: 2556720, PMCID: PMC298544, DOI: 10.1073/pnas.86.23.9592.Peer-Reviewed Original ResearchEstimation of Na+ dwell time in the gramicidin A channel. Na+ ions as blockers of H+ currents
Heinemann S, Sigworth F. Estimation of Na+ dwell time in the gramicidin A channel. Na+ ions as blockers of H+ currents. Biochimica Et Biophysica Acta 1989, 987: 8-14. PMID: 2480817, DOI: 10.1016/0005-2736(89)90448-3.Peer-Reviewed Original ResearchTransmembrane Channels Based on Tartaric Acid-Gramicidin A Hybrids
Stankovic C, Heinemann S, Delfino J, Sigworth F, Schreiber S. Transmembrane Channels Based on Tartaric Acid-Gramicidin A Hybrids. Science 1989, 244: 813-817. PMID: 2471263, DOI: 10.1126/science.2471263.Peer-Reviewed Original Research
1988
Open channel noise. IV. Estimation of rapid kinetics of formamide block in gramicidin A channels
Heinemann S, Sigworth F. Open channel noise. IV. Estimation of rapid kinetics of formamide block in gramicidin A channels. Biophysical Journal 1988, 54: 757-764. PMID: 2465033, PMCID: PMC1330382, DOI: 10.1016/s0006-3495(88)83013-3.Peer-Reviewed Original ResearchMeSH KeywordsElectric ConductivityFormamidesGramicidinIon ChannelsKineticsMathematicsMembrane PotentialsModels, BiologicalConceptsBiological ion channelsGramicidin A channelsTime resolutionCurrent histogramFast time scaleOpen channel noiseCharacteristic timeNoise measurementsSingle-channel experimentsNoise experimentsDirect measurementTime scalesA channelsSpectral densityBandwidth limitationsCurrentTheoretical approachMeasurementsIon channelsBlocking processChannelsSingle-channel recordingsSingle-channel currentsNoiseDependence
1987
Open channel noise. III. High-resolution recordings show rapid current fluctuations in gramicidin A and four chemical analogues
Sigworth F, Urry D, Prasad K. Open channel noise. III. High-resolution recordings show rapid current fluctuations in gramicidin A and four chemical analogues. Biophysical Journal 1987, 52: 1055-1064. PMID: 2447969, PMCID: PMC1330105, DOI: 10.1016/s0006-3495(87)83299-x.Peer-Reviewed Original Research
1986
Open channel noise. II. A test for coupling between current fluctuations and conformational transitions in the acetylcholine receptor
Sigworth F. Open channel noise. II. A test for coupling between current fluctuations and conformational transitions in the acetylcholine receptor. Biophysical Journal 1986, 49: 1041-1046. PMID: 2423148, PMCID: PMC1329684, DOI: 10.1016/s0006-3495(86)83732-8.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell MembraneElectric ConductivityIon ChannelsKineticsMathematicsModels, BiologicalMusclesProtein ConformationRatsReceptors, Cholinergic
1980
The variance of sodium current fluctuations at the node of Ranvier
Sigworth F. The variance of sodium current fluctuations at the node of Ranvier. The Journal Of Physiology 1980, 307: 97-129. PMID: 6259340, PMCID: PMC1283036, DOI: 10.1113/jphysiol.1980.sp013426.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsElectric ConductivityElectronicsIn Vitro TechniquesIon ChannelsKineticsMembrane PotentialsRana pipiensRana temporariaRanvier's NodesSodiumSingle Na+ channel currents observed in cultured rat muscle cells
Sigworth F, Neher E. Single Na+ channel currents observed in cultured rat muscle cells. Nature 1980, 287: 447-449. PMID: 6253802, DOI: 10.1038/287447a0.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCells, CulturedElectric ConductivityIon ChannelsMembrane PotentialsMicroelectrodesMusclesRatsSodiumChemical modification reduces the conductance of sodium channels in nerve
Sigworth F, Spalding B. Chemical modification reduces the conductance of sodium channels in nerve. Nature 1980, 283: 293-295. PMID: 6965422, DOI: 10.1038/283293a0.Peer-Reviewed Original ResearchConceptsChemical modificationTrimethyloxonium ionSuch chemical modificationsCarboxyl groupsNegative chargeSuch reagentsTMO treatmentPermeability propertiesReagentsLinear instantaneous current-voltage relationshipSmaller single-channel conductancePropertiesPotent poisonNormal KdIonsModificationSaxitoxinCharge
1977
Sodium channels in nerve apparently have two conductance states
SIGWORTH F. Sodium channels in nerve apparently have two conductance states. Nature 1977, 270: 265-267. PMID: 593345, DOI: 10.1038/270265a0.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnuraElectric ConductivityIn Vitro TechniquesMembrane PotentialsRanvier's NodesSodium