2001
Conserved amino acids near the carboxy terminus of bacterial tyrosyl‐tRNA synthetase are involved in tRNA and Tyr‐AMP binding
Salazar J, Zuñiga R, Lefimil C, Söll D, Orellana O. Conserved amino acids near the carboxy terminus of bacterial tyrosyl‐tRNA synthetase are involved in tRNA and Tyr‐AMP binding. FEBS Letters 2001, 491: 257-260. PMID: 11240138, DOI: 10.1016/s0014-5793(01)02214-1.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine MonophosphateBacterial ProteinsCloning, MolecularConserved SequenceDimerizationEscherichia coliGammaproteobacteriaGene ExpressionGenetic Complementation TestGeobacillus stearothermophilusMutagenesis, Site-DirectedRNA, TransferSequence Homology, Amino AcidStructure-Activity RelationshipTyrosineTyrosine-tRNA LigaseConceptsBacterial tyrosyl-tRNA synthetasesBacterial tyrosyl tRNA synthetaseConserved amino acidsAmino acidsAmino acid identityAmino-terminal regionActive site domainCarboxy-terminal segmentTyrosyl-tRNA synthetasesTyrosyl-tRNA synthetaseAcid identityLargest subfamilyCarboxy terminusSite domainTRNA bindingEnzyme functionTyr-AMPTRNATyrRSResiduesEquivalent roleBindingH306S356K395
1997
Defining the Active Site of Yeast Seryl-tRNA Synthetase MUTATIONS IN MOTIF 2 LOOP RESIDUES AFFECT tRNA-DEPENDENT AMINO ACID RECOGNITION*
Lenhard B, Filipić S, Landeka I, Škrtić I, Söll D, Weygand-Durašević I. Defining the Active Site of Yeast Seryl-tRNA Synthetase MUTATIONS IN MOTIF 2 LOOP RESIDUES AFFECT tRNA-DEPENDENT AMINO ACID RECOGNITION*. Journal Of Biological Chemistry 1997, 272: 1136-1141. PMID: 8995413, DOI: 10.1074/jbc.272.2.1136.Peer-Reviewed Original ResearchConceptsMotif 2 loopAmino acid recognitionSeryl-tRNA synthetaseClass II aminoacyl-tRNA synthetasesSeryl-tRNA synthetasesYeast seryl-tRNA synthetaseAmino acidsLoss of complementationAminoacyl-tRNA synthetasesActive sitePresence of tRNASteady-state kinetic analysisProkaryotic counterpartsYeast enzymeElevated Km valuesNull allelesConformational changesTRNAAcceptor endSynthetasesGenesATPStructural dataStructural studiesSerine
1996
Protein-RNA molecular recognition
Ibba M, Söll D. Protein-RNA molecular recognition. Nature 1996, 381: 656-656. PMID: 8649510, DOI: 10.1038/381656a0.Peer-Reviewed Original ResearchBase CompositionGuanineIsomerasesProtein BindingRNARNA, TransferRNA-Binding ProteinsStructure-Activity RelationshipUridine
1994
Functional communication in the recognition of tRNA by Escherichia coli glutaminyl-tRNA synthetase.
Rogers M, Adachi T, Inokuchi H, Söll D. Functional communication in the recognition of tRNA by Escherichia coli glutaminyl-tRNA synthetase. Proceedings Of The National Academy Of Sciences Of The United States Of America 1994, 91: 291-295. PMID: 7506418, PMCID: PMC42933, DOI: 10.1073/pnas.91.1.291.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAmino Acyl-tRNA SynthetasesAnticodonBacterial ProteinsEscherichia coliGenes, SuppressorModels, MolecularMolecular Sequence DataMutagenesis, Site-DirectedProtein Structure, TertiaryRNA, BacterialRNA, TransferStructure-Activity RelationshipSubstrate SpecificityTransfer RNA AminoacylationConceptsEscherichia coli glutaminyl-tRNA synthetaseGlutaminyl-tRNA synthetaseLys-317Genetic selectionOpal suppressorMutant enzymesWild-type GlnRSAsp-235Anticodon-binding domainSingle amino acid changeSite-directed mutagenesisNumber of mutantsAmino acid changesRecognition of tRNAGlnR mutantAnticodon recognitionAdditional mutantsGln mutantGlnRMutantsAcid changesBase pairsSpecificity constantAminoacylationTRNA
1993
Selection of a ‘minimal’ glutaminyl‐tRNA synthetase and the evolution of class I synthetases.
Schwob E, Söll D. Selection of a ‘minimal’ glutaminyl‐tRNA synthetase and the evolution of class I synthetases. The EMBO Journal 1993, 12: 5201-5208. PMID: 7505222, PMCID: PMC413784, DOI: 10.1002/j.1460-2075.1993.tb06215.x.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acyl-tRNA SynthetasesBacterial ProteinsBase SequenceBinding SitesBiological EvolutionEscherichia coliModels, MolecularMolecular Sequence DataMutagenesis, Site-DirectedProtein Structure, TertiaryRNA, BacterialRNA, Transfer, GlnRNA, Transfer, SerStructure-Activity RelationshipTransfer RNA AminoacylationConceptsGlutaminyl-tRNA synthetaseAminoacyl-tRNA synthetasesEscherichia coli glutaminyl-tRNA synthetaseClass I aminoacyl-tRNA synthetasesNew recognition specificitiesNon-catalytic domainSubstrate recognition propertiesNon-cognate tRNAsRecognition of tRNACommon ancestorSequence motifsAmber suppressorGenetic codeTRNA substratesCatalytic coreGlnRTRNARecognition specificityDistinct domainsEnzymatic activityElaborate relationshipSynthetasesSpecific roleClass ISynthetaseDiscrimination among tRNAs intermediate in glutamate and glutamine acceptor identity.
Rogers K, Söll D. Discrimination among tRNAs intermediate in glutamate and glutamine acceptor identity. Biochemistry 1993, 32: 14210-9. PMID: 7505112, DOI: 10.1021/bi00214a021.Peer-Reviewed Original ResearchAmino Acyl-tRNA SynthetasesAnticodonBase SequenceBiological EvolutionEscherichia coliGlutamate-tRNA LigaseHydrogen BondingKineticsMolecular Sequence DataNucleic Acid ConformationRNA, BacterialRNA, Transfer, GlnRNA, Transfer, GluStructure-Activity RelationshipSubstrate SpecificityTransfer RNA AminoacylationAcceptor end binding domain interactions ensure correct aminoacylation of transfer RNA.
Weygand-Durasević I, Schwob E, Söll D. Acceptor end binding domain interactions ensure correct aminoacylation of transfer RNA. Proceedings Of The National Academy Of Sciences Of The United States Of America 1993, 90: 2010-2014. PMID: 7680483, PMCID: PMC46010, DOI: 10.1073/pnas.90.5.2010.Peer-Reviewed Original ResearchConceptsAmber suppressor tRNASuppressor tRNAEscherichia coli glutaminyl-tRNA synthetaseAcceptor stemAccuracy of aminoacylationGlutaminyl-tRNA synthetaseWild-type enzymeNoncognate complexGlnR mutantTRNA specificityArg-130Amber mutationTransfer RNASuch mutantsMutant enzymesCritical residuesDomain contributesDomain interactionsRecognition specificityTRNAGlu-131MutantsNoncognate tRNAsGlnRCorrect aminoacylation
1992
Synthetase competition and tRNA context determine the in vivo identity of tRNA discriminator mutants
Sherman J, Rogers K, Rogers M, Söll D. Synthetase competition and tRNA context determine the in vivo identity of tRNA discriminator mutants. Journal Of Molecular Biology 1992, 228: 1055-1062. PMID: 1474577, DOI: 10.1016/0022-2836(92)90314-a.Peer-Reviewed Original ResearchConceptsAmber suppressorTyrosine tRNAN-terminal protein sequencingGlutamyl-tRNA synthetaseE. coli dihydrofolate reductaseAminoacyl-tRNA synthetasesEffects of mutationsEfficiency of aminoacylationColi dihydrofolate reductaseSite of aminoacylationTyrosine specificityTRNAs exhibitGlutamine tRNAMutagenic analysisProtein sequencingGlutamate tRNAImportant identity elementVivo identityTRNANucleotide substitutionsTRNA identityDiscriminator baseDihydrofolate reductaseMultiple mutationsSynthetases
1990
The accuracy of aminoacylation — ensuring the fidelity of the genetic code
Söll D. The accuracy of aminoacylation — ensuring the fidelity of the genetic code. Cellular And Molecular Life Sciences 1990, 46: 1089-1096. PMID: 2253707, DOI: 10.1007/bf01936918.Peer-Reviewed Original ResearchConceptsAccuracy of aminoacylationTransfer RNA speciesAminoacyl-tRNA synthetasesMessenger RNA codonRNA speciesProtein biosynthesisGenetic codeProtein interactionsParticular tRNATRNACorrect attachmentBiophysical techniquesRNA codonsAmino acidsSynthetasesSpecific recognitionProper interactionAnticodonBiosynthesisCodonAminoacylationNucleotidesSpeciesEnzymeIdentity element
1989
Structural Basis for Misaminoacylation by Mutant E. coli Glutaminyl-tRNA Synthetase Enzymes
Perona J, Swanson R, Rould M, Steitz T, Söll D. Structural Basis for Misaminoacylation by Mutant E. coli Glutaminyl-tRNA Synthetase Enzymes. Science 1989, 246: 1152-1154. PMID: 2686030, DOI: 10.1126/science.2686030.Peer-Reviewed Original ResearchThe selenocysteine-inserting opal suppressor serine tRNA from E.coli is highly unusual in structure and modification
Schön A, Böck A, Ott G, Sprinzl M, Söll D. The selenocysteine-inserting opal suppressor serine tRNA from E.coli is highly unusual in structure and modification. Nucleic Acids Research 1989, 17: 7159-7165. PMID: 2529478, PMCID: PMC334795, DOI: 10.1093/nar/17.18.7159.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acyl-tRNA SynthetasesBase SequenceChromatography, High Pressure LiquidCodonCysteineEscherichia coliGenes, BacterialMolecular Sequence DataNucleic Acid ConformationRNA, Transfer, Amino Acid-SpecificRNA, Transfer, SerSeleniumSelenocysteineStructure-Activity RelationshipSuppression, GeneticSubstrate structural requirements of Schizosaccharomyces pombe RNase P
Drainas D, Zimmerly S, Willis I, Söll D. Substrate structural requirements of Schizosaccharomyces pombe RNase P. FEBS Letters 1989, 251: 84-88. PMID: 2666172, DOI: 10.1016/0014-5793(89)81433-4.Peer-Reviewed Original Research
1988
Yeast RNase P: catalytic activity and substrate binding are separate functions.
Nichols M, Söll D, Willis I. Yeast RNase P: catalytic activity and substrate binding are separate functions. Proceedings Of The National Academy Of Sciences Of The United States Of America 1988, 85: 1379-1383. PMID: 3278310, PMCID: PMC279774, DOI: 10.1073/pnas.85.5.1379.Peer-Reviewed Original ResearchConceptsPrecursor tRNAsRNase PSubstrate bindingGel retardationCatalytic functionRibonucleoprotein RNase PDistinct sequence preferencesEnzyme catalytic functionRNase P cleavage siteMature tRNARNase P.Catalytic integrityTRNA precursorsRNA moietyRNA componentSequence preferenceTRNATRNA complexProtein componentsAcceptor stemEnzyme mechanismMaximal cleavageSecond nucleotideCleavage siteEnzymeProcessing of histidine transfer RNA precursors. Abnormal cleavage site for RNase P.
Burkard U, Willis I, Söll D. Processing of histidine transfer RNA precursors. Abnormal cleavage site for RNase P. Journal Of Biological Chemistry 1988, 263: 2447-2451. PMID: 3276688, DOI: 10.1016/s0021-9258(18)69227-0.Peer-Reviewed Original Research
1985
Nucleotide sequences of two serine tRNAs with a GGA anticodon: the structure-function relationships in the serine family of E. coli tRNAs
Grosjean H, Nicoghosian K, Haumont E, Söll D, Cedergren R. Nucleotide sequences of two serine tRNAs with a GGA anticodon: the structure-function relationships in the serine family of E. coli tRNAs. Nucleic Acids Research 1985, 13: 5697-5706. PMID: 3898020, PMCID: PMC321899, DOI: 10.1093/nar/13.15.5697.Peer-Reviewed Original ResearchMeSH KeywordsAnticodonBase CompositionBase SequenceBiological EvolutionCodonEscherichia coliRNA, TransferRNA, Transfer, Amino AcylSerine-tRNA LigaseStructure-Activity RelationshipConceptsSerine tRNANucleotide sequenceRecent common ancestorE. coli tRNACodon-anticodon interactionStructure-function relationshipsEubacterial originUCU codonsEvolutionary analysisCommon ancestorD-loopTRNAAnticodon stemSerine familyAnticodonGenesE. coliMinor speciesCodonMajor speciesSpeciesSequenceTRNASerAncestorSerine
1984
Transcription factor binding is limited by the 5'-flanking regions of a Drosophila tRNAHis gene and a tRNAHis pseudogene.
Cooley L, Schaack J, Burke DJ, Thomas B, Söll D. Transcription factor binding is limited by the 5'-flanking regions of a Drosophila tRNAHis gene and a tRNAHis pseudogene. Molecular And Cellular Biology 1984, 4: 2714-2722. PMID: 6570190, PMCID: PMC369281, DOI: 10.1128/mcb.4.12.2714.Peer-Reviewed Original ResearchConceptsDrosophila Kc cell extractHeLa cell extractsCell extractsReal genesStable complex formationControl regionDeletion analysisStable transcription complex formationRecombinant clonesDrosophila tRNAArg geneTRNA gene clusterTranscription complex formationBona fide genesInternal control regionTranscription factor bindingSame DNA strandComplex formationTranscription control regionsConsecutive base pairsTRNAHis geneTRNAArg geneFide genesGene clusterTranscription factorsFactor bindingMisaminoacylation by glutaminyl-tRNA synthetase: relaxed specificity in wild-type and mutant enzymes.
Hoben P, Uemura H, Yamao F, Cheung A, Swanson R, Sumner-Smith M, Söll D. Misaminoacylation by glutaminyl-tRNA synthetase: relaxed specificity in wild-type and mutant enzymes. The FASEB Journal 1984, 43: 2972-6. PMID: 6389180.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAmino Acyl-tRNA SynthetasesEscherichia coliGenes, BacterialGlutamineMutationStructure-Activity RelationshipSubstrate SpecificityConceptsGlutaminyl-tRNA synthetaseMutant enzymesWild-type GlnRSAmino-terminal halfAmino acid sequenceAmino acid changesStructural gene mutationsTranslational controlTRNA speciesRelaxed specificityGene sequencesAcid sequenceGlnRRegulation mechanismAcid changesMonomeric polypeptideAmino acidsEnzymeTRNATyrSynthetaseMutationsGene mutationsGlutamineSequenceMisaminoacylation
1983
The structure and regulation of Escherichia coli glutaminyl-tRNA synthetase.
Cheung A, Hoben P, Inokuchi H, Ozeki H, Sumner-Smith M, Swanson R, Uemura H, Yamao F, Söll D. The structure and regulation of Escherichia coli glutaminyl-tRNA synthetase. Nucleic Acids Symposium Series 1983, 221-2. PMID: 6364044.Peer-Reviewed Original ResearchAmino Acyl-tRNA SynthetasesEscherichia coliMutationProtein ConformationStructure-Activity Relationship
1982
Nonsense suppression in Schizosaccharomyces pombe: The S. pombe Sup3-e tRNASerUGA gene is active in S. cerevisiae
Hottinger H, Pearson D, Yamao F, Gamulin V, Colley L, Cooper T, Söll D. Nonsense suppression in Schizosaccharomyces pombe: The S. pombe Sup3-e tRNASerUGA gene is active in S. cerevisiae. Molecular Genetics And Genomics 1982, 188: 219-224. PMID: 6818425, DOI: 10.1007/bf00332678.Peer-Reviewed Original Research
1977
Analogs of methionyl-tRNA synthetase substrates containing photolabile groups *
Wetzel R, Soöll D. Analogs of methionyl-tRNA synthetase substrates containing photolabile groups *. Nucleic Acids Research 1977, 4: 1681-1694. PMID: 331263, PMCID: PMC343781, DOI: 10.1093/nar/4.5.1681.Peer-Reviewed Original Research