2024
Publisher Correction: Tissue spaces are reservoirs of antigenic diversity for Trypanosoma brucei
Beaver A, Keneskhanova Z, Cosentino R, Weiss B, Awuoche E, Smallenberger G, Buenconsejo G, Crilly N, Smith J, Hakim J, Zhang B, Bobb B, Rijo-Ferreira F, Figueiredo L, Aksoy S, Siegel T, Mugnier M. Publisher Correction: Tissue spaces are reservoirs of antigenic diversity for Trypanosoma brucei. Nature 2024, 1-1. PMID: 39550527, DOI: 10.1038/s41586-024-08389-7.Peer-Reviewed Original ResearchTissue spaces are reservoirs of antigenic diversity for Trypanosoma brucei
Beaver A, Keneskhanova Z, Cosentino R, Weiss B, Awuoche E, Smallenberger G, Buenconsejo G, Crilly N, Smith J, Hakim J, Zhang B, Bobb B, Rijo-Ferreira F, Figueiredo L, Aksoy S, Siegel T, Mugnier M. Tissue spaces are reservoirs of antigenic diversity for Trypanosoma brucei. Nature 2024, 1-8. PMID: 39478231, DOI: 10.1038/s41586-024-08151-z.Peer-Reviewed Original ResearchVariant surface glycoproteinAntigenic diversityAntigenic variationHigh-throughput sequencing approachDense variant surface glycoproteinPopulations of T. bruceiDynamics of antigenic variationGenomic repertoirePathogen diversificationSequencing approachExtravascular spaceTrypanosoma bruceiVariation in vivoHost immune systemAntigenic variation in vivoSurface glycoproteinSlow immune responseDiversitySwitching expressionParasite populations
2023
A volatile sex attractant of tsetse flies
Ebrahim S, Dweck H, Weiss B, Carlson J. A volatile sex attractant of tsetse flies. Science 2023, 379: eade1877. PMID: 36795837, PMCID: PMC10204727, DOI: 10.1126/science.ade1877.Peer-Reviewed Original Research
2022
Heme-induced genes facilitate endosymbiont (Sodalis glossinidius) colonization of the tsetse fly (Glossina morsitans) midgut
Runyen-Janecky L, Scheutzow J, Farsin R, Cabo L, Wall K, Kuhn K, Amador R, D’Souza S, Vigneron A, Weiss B. Heme-induced genes facilitate endosymbiont (Sodalis glossinidius) colonization of the tsetse fly (Glossina morsitans) midgut. PLOS Neglected Tropical Diseases 2022, 16: e0010833. PMID: 36441823, PMCID: PMC9731421, DOI: 10.1371/journal.pntd.0010833.Peer-Reviewed Original ResearchConceptsTsetse midgutHeme environmentDNA-binding proteinsGene Ontology termsBlood mealTsetse fly midgutVertebrate bloodBacterial genesHost midgutOntology termsDisease-causing pathogensBiological functionsGene expressionMutant strainFucose transporterInsertion mutationsMetabolic processesHost competencyEnvironmental stressorsFly midgutMidgutGenesSodalisTsetse fliesHemeMicrobe Profile: Wigglesworthia glossinidia: the tsetse fly’s significant other
Weiss BL, Rio RVM, Aksoy S. Microbe Profile: Wigglesworthia glossinidia: the tsetse fly’s significant other. Microbiology 2022, 168: 001242. PMID: 36129743, PMCID: PMC10723186, DOI: 10.1099/mic.0.001242.Peer-Reviewed Original ResearchConceptsPhysiological homeostasisNutritional roleEssential nutritional roleUnique physiological adaptationsTsetse fliesFly microbiotaWigglesworthia glossinidiaObligate mutualistsHost fitnessAncient associationParasitic trypanosomesLarval periodPhysiological adaptationsFitness outcomesTsetse's abilityAntimicrobial responsesImmune systemAmidasesFliesMicrobiotaMutualistsWigglesworthiaEndosymbiontsGenomeB vitaminsMetabolic interactions between disease-transmitting vectors and their microbiota
Song X, Zhong Z, Gao L, Weiss BL, Wang J. Metabolic interactions between disease-transmitting vectors and their microbiota. Trends In Parasitology 2022, 38: 697-708. PMID: 35643853, DOI: 10.1016/j.pt.2022.05.002.Peer-Reviewed Original ResearchConceptsDisease-transmitting vectorsSymbiotic microbesPathogen defenseHost biologyHematophagous arthropodsBacterial metabolic activitySand fliesArthropod vectorsImportant vectorAnimals/humansMetabolic interactionsEndogenous microbiotaTsetse fliesFliesRecent discoveryVector-borne diseasesBiologyMetabolic activityMosquitoesMicrobiotaDifferent arthropod vectorsArthropodsMicrobesOrganismsTicksTsetse Flies (Glossinidae)
Benoit J, Attardo G, Weiss B. Tsetse Flies (Glossinidae). 2022, 837-851. DOI: 10.1016/b978-0-12-818731-9.00004-5.Peer-Reviewed Original ResearchTsetse fliesUnique reproductive biologyPathogenic African trypanosomesFly biologyReproductive biologyVertebrate bloodEcological distributionEvolutionary adaptationInsect pestsLow fecundityPopulation suppressionAfrican trypanosomesUnique biologyHost locationFliesProgeny developmentBiologyPhysiological aspectsMulti-targeted strategiesAfrican trypanosomiasisHuman healthPestsFecundityTrypanosomesHigh investment
2021
Infection with endosymbiotic Spiroplasma disrupts tsetse (Glossina fuscipes fuscipes) metabolic and reproductive homeostasis
Son JH, Weiss BL, Schneider DI, Dera KM, Gstöttenmayer F, Opiro R, Echodu R, Saarman NP, Attardo GM, Onyango M, Abdalla A, Aksoy S. Infection with endosymbiotic Spiroplasma disrupts tsetse (Glossina fuscipes fuscipes) metabolic and reproductive homeostasis. PLOS Pathogens 2021, 17: e1009539. PMID: 34529715, PMCID: PMC8478229, DOI: 10.1371/journal.ppat.1009539.Peer-Reviewed Original ResearchConceptsReproductive fitnessSpiroplasma infectionSex-biased gene expressionHigh-throughput RNA sequencingReproductive physiologyIntrauterine larval developmentMale reproductive fitnessPathogenic African trypanosomesEndosymbiotic bacteriaFly resistanceTsetse fecundityFemale spermathecaFemale fecundityRNA sequencingLarval developmentSpiroplasmaGene expressionAfrican trypanosomesReproductive tissuesReproductive homeostasisTsetse hostHuman diseasesPopulation sizeProtective phenotypeLab linesParatransgenic manipulation of a tsetse microRNA alters the physiological homeostasis of the fly’s midgut environment
Yang L, Weiss BL, Williams AE, Aksoy E, de Silva Orfano A, Son JH, Wu Y, Vigneron A, Karakus M, Aksoy S. Paratransgenic manipulation of a tsetse microRNA alters the physiological homeostasis of the fly’s midgut environment. PLOS Pathogens 2021, 17: e1009475. PMID: 34107000, PMCID: PMC8216540, DOI: 10.1371/journal.ppat.1009475.Peer-Reviewed Original ResearchConceptsGut lumenCurrent disease control methodsTsetse's PMMidgut environmentTsetse's abilityAbundant secretory proteinsPeritrophic matrixInfection outcomesTrypanosome infection prevalenceChemotherapeutic treatmentParatransgenic manipulationInfected peopleEtiological agentInfection prevalenceInfectionInfection establishmentParasitic African trypanosomesCardiaSignificant increaseNon-coding RNAsPhysiological homeostasisMolecular cascadesBlood digestionSmall non-coding RNAsParatransgenic tsetse
2019
Correction: Colonization of the tsetse fly midgut with commensal Kosakonia cowanii Zambiae inhibits trypanosome infection establishment
Weiss BL, Maltz MA, Vigneron A, Wu Y, Walter KS, O'Neill MB, Wang J, Aksoy S. Correction: Colonization of the tsetse fly midgut with commensal Kosakonia cowanii Zambiae inhibits trypanosome infection establishment. PLOS Pathogens 2019, 15: e1007688. PMID: 30958865, PMCID: PMC6453440, DOI: 10.1371/journal.ppat.1007688.Peer-Reviewed Original Research
2017
Chapter 9 Role of the Microbiota During Development of the Arthropod Vector Immune System
Vigneron A, Weiss B. Chapter 9 Role of the Microbiota During Development of the Arthropod Vector Immune System. 2017, 161-172. DOI: 10.1016/b978-0-12-805350-8.00009-x.Peer-Reviewed Original ResearchVector immune systemArthropod disease vectorsObligate blood feedersBacterial symbiontsChapter 9 RoleMosquito microbiotaImmune systemParasitic trypanosomesBacterial microbesBlood feedersMolecular mechanismsDisease vectorsAdult stageNonpathogenic Escherichia coliEscherichia coliVector competencyPathogen transmissionTsetse fliesIndigenous microbiotaCellular immune systemMidgut barrierFliesMidgut infectionSystemic infectionMaturation
2014
Tsetse paratransgenesis: a novel strategy for reducing the spread of African trypanosomiasis.
Weiss B, Aksoy S. Tsetse paratransgenesis: a novel strategy for reducing the spread of African trypanosomiasis. 2014, 250-262. DOI: 10.1079/9781780644516.0250.Peer-Reviewed Original Research
2012
Enhancing tsetse fly refractoriness to trypanosome infection – A new IAEA coordinated research project
Van Den Abbeele J, Bourtzis K, Weiss B, Cordón-Rosales C, Miller W, Abd-alla AM, Parker A. Enhancing tsetse fly refractoriness to trypanosome infection – A new IAEA coordinated research project. Journal Of Invertebrate Pathology 2012, 112: s142-s147. PMID: 22841950, DOI: 10.1016/j.jip.2012.07.020.Peer-Reviewed Original Research
2008
Paratransgenesis Applied for Control of Tsetse Transmitted Sleeping Sickness
Aksoy S, Weiss B, Attardo G. Paratransgenesis Applied for Control of Tsetse Transmitted Sleeping Sickness. Advances In Experimental Medicine And Biology 2008, 627: 35-48. PMID: 18510012, DOI: 10.1007/978-0-387-78225-6_3.Peer-Reviewed Original ResearchConceptsGenetic transformation systemForeign gene productsSodalis symbiontsSymbiotic microbesNew vector control strategiesTsetse symbiontsFunctional biologyTransmission biologyGene productsHost functionsSymbiontsTsetse vectorDisease cycleControl of trypanosomiasisTrypanosome transmissionImmunity effectorsTransformation systemTransformation technologyBiologyGenomicsCurrent knowledgeVector control strategiesAnimal healthTrypanocidal compoundsSleeping Sickness
2007
Novel strategies targeting pathogen transmission reduction in insect vectors: Tsetse‐transmitted trypanosomiasis control
WEISS B, ATTARDO G, Roshan P, Jingwen W, AKSOY S. Novel strategies targeting pathogen transmission reduction in insect vectors: Tsetse‐transmitted trypanosomiasis control. Entomological Research 2007, 37: 231-237. DOI: 10.1111/j.1748-5967.2007.00119.x.Peer-Reviewed Original ResearchInsect vectorsEffective disease management strategiesNovel disease control strategiesDisease management strategiesInsect-pathogen interactionsDisease control strategiesPopulation reduction methodsAgricultural diseasesTransgenic technologyTrypanosomiasis controlImportant human diseasesInsect biologyManagement strategiesTsetse vectorVector populationsAfrican trypanosomesControl strategyHuman diseasesDisease controlInsectsRecent knowledgeVector control strategiesBiologyCropsSelective eliminationSymbiosis-Based Technological Advances to Improve Tsetse Glossina spp. SIT Application
Aksoy S, Weiss B. Symbiosis-Based Technological Advances to Improve Tsetse Glossina spp. SIT Application. 2007, 137-148. DOI: 10.1007/978-1-4020-6059-5_12.Peer-Reviewed Original ResearchSterile insect techniqueCytoplasmic incompatibilityField populationsWolbachia infectionGene productsTsetse fliesGerm-line transformationComplete genome sequencePresence of WolbachiaGene expression experimentsPest control toolForeign gene productsParasitic African trypanosomesGlossina sppMidgut symbiontsArea-wide basisFly developmentInsect speciesReproductive incompatibilitySIT applicationMale sterilityUninfected insectsGenome sequenceMating incompatibilityExpression experiments
2004
Two feeding-induced proteins from the male gonad trigger engorgement of the female tick Amblyomma hebraeum.
Weiss BL, Kaufman WR. Two feeding-induced proteins from the male gonad trigger engorgement of the female tick Amblyomma hebraeum. Proceedings Of The National Academy Of Sciences Of The United States Of America 2004, 101: 5874-9. PMID: 15069191, PMCID: PMC395891, DOI: 10.1073/pnas.0307529101.Peer-Reviewed Original Research
2003
Nitric oxide produced by a novel nitric oxide synthase isoform is necessary for gonadotropin-releasing hormone-induced growth hormone secretion via a cGMP-dependent mechanism.
Uretsky AD, Weiss BL, Yunker WK, Chang JP. Nitric oxide produced by a novel nitric oxide synthase isoform is necessary for gonadotropin-releasing hormone-induced growth hormone secretion via a cGMP-dependent mechanism. Journal Of Neuroendocrinology 2003, 15: 667-76. PMID: 12787051, DOI: 10.1046/j.1365-2826.2003.01046.x.Peer-Reviewed Original Research
2002
Identification and characterization of genes differentially expressed in the testis/vas deferens of the fed male tick, Amblyomma hebraeum
Weiss BL, Stepczynski JM, Wong P, Kaufman WR. Identification and characterization of genes differentially expressed in the testis/vas deferens of the fed male tick, Amblyomma hebraeum. Insect Biochemistry And Molecular Biology 2002, 32: 785-793. PMID: 12044495, DOI: 10.1016/s0965-1748(01)00161-8.Peer-Reviewed Original ResearchConceptsTestis/vas deferensMature male gonadsCharacterization of genesNorthern blot analysisSequence similarityCDNA libraryMale developmentGonad maturationGenomic DNAMale gonadsMolecular phenotypesMRNA transcriptsGenesBlot analysisTissues of fedUnfed malesClonesUnfed animalsFed ticksPhysiological changesAmblyomma hebraeumVas deferensTicksHomologyAcylphosphatase
2001
The relationship between 'critical weight' and 20-hydroxyecdysone in the female ixodid tick, Amblyomma hebraeum.
Weiss BL, Reuben Kaufman W. The relationship between 'critical weight' and 20-hydroxyecdysone in the female ixodid tick, Amblyomma hebraeum. Journal Of Insect Physiology 2001, 47: 1261-1267. PMID: 12770177, DOI: 10.1016/s0022-1910(01)00112-3.Peer-Reviewed Original Research