Andreas Coppi
Associate Research Scientist (Cardiovascular Medicine)DownloadHi-Res Photo
Cards
Appointments
Cardiovascular Medicine
Primary
Contact Info
About
Titles
Associate Research Scientist (Cardiovascular Medicine)
Appointments
Cardiovascular Medicine
Associate Research ScientistPrimary
Other Departments & Organizations
- Cardiovascular Medicine
- Center for Outcomes Research & Evaluation (CORE)
- Internal Medicine
Research
Research at a Glance
Yale Co-Authors
Frequent collaborators of Andreas Coppi's published research.
Publications Timeline
A big-picture view of Andreas Coppi's research output by year.
Harlan Krumholz, MD, SM
Wade Schulz, MD, PhD
Shu-Xia Li, PhD
Rohan Khera, MD, MS
Akiko Iwasaki, PhD
Albert Ko, MD
28Publications
1,216Citations
Publications
2024
Automated Identification of Heart Failure With Reduced Ejection Fraction Using Deep Learning-Based Natural Language Processing
Nargesi A, Adejumo P, Dhingra L, Rosand B, Hengartner A, Coppi A, Benigeri S, Sen S, Ahmad T, Nadkarni G, Lin Z, Ahmad F, Krumholz H, Khera R. Automated Identification of Heart Failure With Reduced Ejection Fraction Using Deep Learning-Based Natural Language Processing. JACC Heart Failure 2024 PMID: 39453355, DOI: 10.1016/j.jchf.2024.08.012.Peer-Reviewed Original ResearchCitationsAltmetricConceptsReduced ejection fractionEjection fractionHeart failureLeft ventricular ejection fractionVentricular ejection fractionYale-New Haven HospitalIdentification of patientsCommunity hospitalIdentification of heart failureLanguage modelNorthwestern MedicineMeasure care qualityQuality of careNew Haven HospitalDeep learning-based natural language processingHFrEFGuideline-directed careDeep learning language modelsMIMIC-IIIDetect HFrEFNatural language processingReclassification improvementHospital dischargePatientsCare qualityArtificial Intelligence-Enhanced Risk Stratification of Cancer Therapeutics-Related Cardiac Dysfunction Using Electrocardiographic Images.
Oikonomou E, Sangha V, Dhingra L, Aminorroaya A, Coppi A, Krumholz H, Baldassarre L, Khera R. Artificial Intelligence-Enhanced Risk Stratification of Cancer Therapeutics-Related Cardiac Dysfunction Using Electrocardiographic Images. Circulation Cardiovascular Quality And Outcomes 2024 PMID: 39221857, DOI: 10.1161/circoutcomes.124.011504.Peer-Reviewed Original ResearchCitationsAltmetricConceptsCancer therapeutics-related cardiac dysfunctionGlobal longitudinal strainLeft ventricular systolic dysfunctionCardiac dysfunctionBreast cancerNon-Hodgkin lymphoma therapyNon-Hodgkin's lymphomaVentricular systolic dysfunctionAssociated with worse global longitudinal strainRisk stratification strategiesHigh-risk groupMonths post-treatmentPost hoc analysisElectrocardiographic (ECGTrastuzumab exposureLymphoma therapySystolic dysfunctionAI-ECGBefore treatmentRisk biomarkersLongitudinal strainLow riskStratification strategiesHigher incidencePositive screenA Multimodal Video-Based AI Biomarker for Aortic Stenosis Development and Progression
Oikonomou E, Holste G, Yuan N, Coppi A, McNamara R, Haynes N, Vora A, Velazquez E, Li F, Menon V, Kapadia S, Gill T, Nadkarni G, Krumholz H, Wang Z, Ouyang D, Khera R. A Multimodal Video-Based AI Biomarker for Aortic Stenosis Development and Progression. JAMA Cardiology 2024, 9: 534-544. PMID: 38581644, PMCID: PMC10999005, DOI: 10.1001/jamacardio.2024.0595.Peer-Reviewed Original ResearchCitationsAltmetricConceptsCardiac magnetic resonanceAortic valve replacementCardiac magnetic resonance imagingAV VmaxSevere ASAortic stenosisCohort studyPeak aortic valve velocityCohort study of patientsAortic valve velocityCohort of patientsTraditional cardiovascular risk factorsAssociated with faster progressionStudy of patientsCedars-Sinai Medical CenterAssociated with AS developmentCardiovascular risk factorsCardiovascular imaging modalitiesIndependent of ageModerate ASEjection fractionEchocardiographic studiesValve replacementRisk stratificationCardiac structureThe PAX LC Trial: A Decentralized, Phase 2, Randomized, Double-blind Study of Nirmatrelvir/Ritonavir Compared with Placebo/Ritonavir for Long COVID
Krumholz H, Sawano M, Bhattacharjee B, Caraballo C, Khera R, Li S, Herrin J, Coppi A, Holub J, Henriquez Y, Johnson M, Goddard T, Rocco E, Hummel A, Al Mouslmani M, Putrino D, Carr K, Carvajal-Gonzalez S, Charnas L, De Jesus M, Ziegler F, Iwasaki A. The PAX LC Trial: A Decentralized, Phase 2, Randomized, Double-blind Study of Nirmatrelvir/Ritonavir Compared with Placebo/Ritonavir for Long COVID. The American Journal Of Medicine 2024 PMID: 38735354, DOI: 10.1016/j.amjmed.2024.04.030.Peer-Reviewed Original ResearchCitationsAltmetricConceptsLC trialPROMIS-29Participants' homesTargeting viral persistencePlacebo-controlled trialDouble-blind studyElectronic health recordsCore Outcome MeasuresLong COVIDEQ-5D-5LRepeated measures analysisEvidence-based treatmentsPhase 2Double-blindParticipant-centred approachStudy drugPrimary endpointSecondary endpointsCommunity-dwellingHealth recordsHealthcare utilizationContiguous US statesViral persistencePatient groupDrug treatment
2023
Computational phenotypes for patients with opioid-related disorders presenting to the emergency department
Taylor R, Gilson A, Schulz W, Lopez K, Young P, Pandya S, Coppi A, Chartash D, Fiellin D, D’Onofrio G. Computational phenotypes for patients with opioid-related disorders presenting to the emergency department. PLOS ONE 2023, 18: e0291572. PMID: 37713393, PMCID: PMC10503758, DOI: 10.1371/journal.pone.0291572.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsConceptsSubstance use disordersUse disordersED visitsPatient presentationCarlson comorbidity indexOpioid-related diagnosesOpioid-related disordersOne-year survivalRate of medicationOpioid use disorderElectronic health record dataPatient-oriented outcomesYears of ageHealth record dataChronic substance use disordersED returnComorbidity indexAcute overdoseMedical managementClinical entityRetrospective studyEmergency departmentChronic conditionsInclusion criteriaUnique cohortAn AI-powered patient triage platform for future viral outbreaks using COVID-19 as a disease model
Charkoftaki G, Aalizadeh R, Santos-Neto A, Tan W, Davidson E, Nikolopoulou V, Wang Y, Thompson B, Furnary T, Chen Y, Wunder E, Coppi A, Schulz W, Iwasaki A, Pierce R, Cruz C, Desir G, Kaminski N, Farhadian S, Veselkov K, Datta R, Campbell M, Thomaidis N, Ko A, Thompson D, Vasiliou V. An AI-powered patient triage platform for future viral outbreaks using COVID-19 as a disease model. Human Genomics 2023, 17: 80. PMID: 37641126, PMCID: PMC10463861, DOI: 10.1186/s40246-023-00521-4.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsConceptsCOVID-19 patientsDisease severityViral outbreaksFuture viral outbreaksLength of hospitalizationIntensive care unitWorse disease prognosisLife-threatening illnessEffective medical interventionsCOVID-19Clinical decision treeGlucuronic acid metabolitesNew potential biomarkersHospitalization lengthCare unitComorbidity dataSerotonin levelsDisease progressionHealthy controlsPatient outcomesDisease prognosisPatient transferPatientsHealthcare resourcesPotential biomarkersSevere aortic stenosis detection by deep learning applied to echocardiography
Holste G, Oikonomou E, Mortazavi B, Coppi A, Faridi K, Miller E, Forrest J, McNamara R, Ohno-Machado L, Yuan N, Gupta A, Ouyang D, Krumholz H, Wang Z, Khera R. Severe aortic stenosis detection by deep learning applied to echocardiography. European Heart Journal 2023, 44: 4592-4604. PMID: 37611002, PMCID: PMC11004929, DOI: 10.1093/eurheartj/ehad456.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsDetection of left ventricular systolic dysfunction from single-lead electrocardiography adapted for portable and wearable devices
Khunte A, Sangha V, Oikonomou E, Dhingra L, Aminorroaya A, Mortazavi B, Coppi A, Brandt C, Krumholz H, Khera R. Detection of left ventricular systolic dysfunction from single-lead electrocardiography adapted for portable and wearable devices. Npj Digital Medicine 2023, 6: 124. PMID: 37433874, PMCID: PMC10336107, DOI: 10.1038/s41746-023-00869-w.Peer-Reviewed Original ResearchCitationsAltmetricConceptsArtificial intelligenceRandom Gaussian noiseNoisy electrocardiogramGaussian noiseElectrocardiogram (ECGWearable devicesSingle-lead electrocardiogramPortable devicesSNRWearableNoiseDevice noiseRepositoryAI-based screeningIntelligenceDetectionDevicesNoise sourcesVentricular systolic dysfunctionModelElectrocardiogramSingle-lead electrocardiographyTraining
2022
Association between primary or booster COVID-19 mRNA vaccination and Omicron lineage BA.1 SARS-CoV-2 infection in people with a prior SARS-CoV-2 infection: A test-negative case–control analysis
Lind M, Robertson A, Silva J, Warner F, Coppi A, Price N, Duckwall C, Sosensky P, Di Giuseppe E, Borg R, Fofana M, Ranzani O, Dean N, Andrews J, Croda J, Iwasaki A, Cummings D, Ko A, Hitchings M, Schulz W. Association between primary or booster COVID-19 mRNA vaccination and Omicron lineage BA.1 SARS-CoV-2 infection in people with a prior SARS-CoV-2 infection: A test-negative case–control analysis. PLOS Medicine 2022, 19: e1004136. PMID: 36454733, PMCID: PMC9714718, DOI: 10.1371/journal.pmed.1004136.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsConceptsSARS-CoV-2 infectionBooster vaccinationPrior infectionOmicron infectionPrimary vaccinationMRNA vaccinationOdds ratioAcute respiratory syndrome coronavirus 2 infectionSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infectionPrior SARS-CoV-2 infectionTest-negative case-control analysisYale New Haven Health SystemTest-negative case-control studyCOVID-19 mRNA vaccinationSyndrome coronavirus 2 infectionOmicron variant infectionPrior infection statusCoronavirus 2 infectionCase-control studyCase-control analysisOdds of infectionRisk of infectionRace/ethnicityBooster dosesDate of testUse of Whole-Genome Sequencing to Estimate the Contribution of Immune Evasion and Waning Immunity on Decreasing COVID-19 Vaccine Effectiveness
Lind M, Copin R, McCarthy S, Coppi A, Warner F, Ferguson D, Duckwall C, Borg R, Muenker M, Overton J, Hamon S, Zhou A, Cummings D, Ko A, Hamilton J, Schulz W, Hitchings M. Use of Whole-Genome Sequencing to Estimate the Contribution of Immune Evasion and Waning Immunity on Decreasing COVID-19 Vaccine Effectiveness. The Journal Of Infectious Diseases 2022, 227: 663-674. PMID: 36408616, DOI: 10.1093/infdis/jiac453.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsConceptsVaccine effectivenessImmune evasionDelta infectionVE estimatesSecond doseTest-negative case-control studySevere acute respiratory syndrome coronavirus 2Acute respiratory syndrome coronavirus 2Whole-genome sequencingCOVID-19 vaccine effectivenessRespiratory syndrome coronavirus 2Syndrome coronavirus 2Case-control studyCoronavirus 2Calendar periodDelta variantInfectionDoseEvasionDaysLow effectivenessImmunityVariants