Scalable and Privacy-Preserving Federated Principal Component Analysis
Froelicher D, Cho H, Edupalli M, Sousa J, Bossuat J, Pyrgelis A, Troncoso-Pastoriza J, Berger B, Hubaux J. Scalable and Privacy-Preserving Federated Principal Component Analysis. 2016 IEEE Symposium On Security And Privacy (SP) 2023, 00: 1908-1925. PMID: 38665901, PMCID: PMC11044025, DOI: 10.1109/sp46215.2023.10179350.Peer-Reviewed Original ResearchHomomorphic encryptionData providersMultiparty homomorphic encryptionPrivacy-preserving alternativeMultiple data providersSecure multiparty computationPassive adversary modelData science domainCleartext dataData confidentialityPrivate dataMultiparty computationSecure systemsInteractive protocolDataset dimensionsEssential algorithmsCentralized solutionData distributionScience domainLocal analysis resultsDimensionality reductionIntermediate resultsEncryptionPrincipal component analysisOriginal dataSequre: a high-performance framework for secure multiparty computation enables biomedical data sharing
Smajlović H, Shajii A, Berger B, Cho H, Numanagić I. Sequre: a high-performance framework for secure multiparty computation enables biomedical data sharing. Genome Biology 2023, 24: 5. PMID: 36631897, PMCID: PMC9832703, DOI: 10.1186/s13059-022-02841-5.Peer-Reviewed Original ResearchConceptsSecure multiparty computationHigh-performance frameworkMultiparty computationMPC applicationsSensitive biomedical dataRapid application developmentPython programming languageCompile-time optimizationBiomedical data sharingCryptographic toolsApplication developmentInvolved entitiesProgramming languageBioinformatics tasksData sharingBiomedical dataPrivate informationComputationFrameworkUsabilitySharingApplicationsSyntaxPerformanceTask