Hai Feng Zhang
Associate Research Scientist in PathologyCards
Appointments
Contact Info
About
Titles
Associate Research Scientist in Pathology
Biography
Research experience: mouse knockout and transgenesis, molecular biology, enzymology, vascular biology, inflammation, angiogenesis, sepsis, macrophage.
Appointments
Education & Training
- PhD
- National University of Singapore
- BS
- China Agriculture University, Biochemistry and physiology
- MS
- China Agriculture University, Endocrinology
Research
Overview
My main interest is heart and vascular diseases caused by inflammation. Excessive/chronic inflammatory responses (e.g., TNF) and increases in reactive oxygen species (ROS) represent common pathogenic mechanism for atherosclerosis. The vascular cell that primarily limits the inflammatory and atherosclerotic process is the vascular endothelial cells (EC). Inflammation/ROS induces EC dysfunction by disturbing normal homeostasis, relaxation and survival. These defects in EC function are mediated by cytokine/redox-regulated signal transduction and gene transcription. My experiments are designed to dissect signal pathways during inflammatory responses. We have identified that AIP1 plays important roles inTNF signaling pathways in EC by interacting with ASK1,TRAF2 and RIP1. AIP1's other functions such as tumor suppression are under investigation.
Research at a Glance
Yale Co-Authors
Publications Timeline
Jenny Huanjiao Zhou, MD, PhD
Derek Toomre, PhD
Francesc Lopez-Giraldez, PhD
Gerald I Shulman, MD, PhD, MACP, MACE, FRCP
In-Hyun Park, PhD
Jaime Grutzendler, MD
Publications
2024
SRF SUMOylation modulates smooth muscle phenotypic switch and vascular remodeling
Xu Y, Zhang H, Chen Y, Pober J, Zhou M, Zhou J, Min W. SRF SUMOylation modulates smooth muscle phenotypic switch and vascular remodeling. Nature Communications 2024, 15: 6919. PMID: 39134547, PMCID: PMC11319592, DOI: 10.1038/s41467-024-51350-5.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsConceptsVascular smooth muscle cellsSerum response factorCardiovascular diseaseVSMC synthetic phenotypeVascular remodelingNeointimal formationSENP1 deficiencySerum response factor activitySmooth muscle phenotypic switchingPhenotypic switchingPathogenesis of cardiovascular diseaseSmooth muscle cellsPost-translational SUMOylationTreatment of cardiovascular diseasesInhibitor AZD6244Phospho-ELK1Increased nuclear accumulationLysosomal localizationGene transcriptionNuclear accumulationMuscle cellsCoronary arteryCVD patientsVSMC phenotypic switchTherapeutic potentialmTORC1 Signaling in Brain Endothelial Progenitors Contributes to CCM Pathogenesis
Min W, Qin L, Zhang H, López-Giráldez F, Jiang N, Kim Y, Mohan V, Su M, Murray K, Grutzendler J, Zhou J. mTORC1 Signaling in Brain Endothelial Progenitors Contributes to CCM Pathogenesis. Circulation Research 2024, 135: e94-e113. PMID: 38957991, PMCID: PMC11293987, DOI: 10.1161/circresaha.123.324015.Peer-Reviewed Original ResearchCitationsAltmetricConceptsCerebral vascular malformationsEndothelial progenitor cellsBlood-brain barrier integritySingle-cell RNA sequencing analysisDisruption of blood-brain barrier integrityBarrier integrityResident endothelial progenitor cellsRNA sequencing analysisTissue immunofluorescence analysisEndothelial cellsEPC clustersStem cell markersFocal neurological deficitsBrain's neurovascular unitMTOR signalingHuman CCM lesionsMTORC1 signalingBlood-brain barrierCapillary endothelial cellsCCM pathogenesisVascular malformationsLesion signaturesNeurological deficitsCell markersClonal expansion
2022
Mitochondrial dysfunction induces ALK5-SMAD2-mediated hypovascularization and arteriovenous malformations in mouse retinas
Zhang H, Li B, Huang Q, López-Giráldez F, Tanaka Y, Lin Q, Mehta S, Wang G, Graham M, Liu X, Park I, Eichmann A, Min W, Zhou J. Mitochondrial dysfunction induces ALK5-SMAD2-mediated hypovascularization and arteriovenous malformations in mouse retinas. Nature Communications 2022, 13: 7637. PMID: 36496409, PMCID: PMC9741628, DOI: 10.1038/s41467-022-35262-w.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsConceptsMitochondrial dysfunctionThioredoxin 2Single-cell RNA-seq analysisRNA-seq analysisMutant miceNuclear genesMitochondrial proteinsMitochondrial localizationHuman retinal diseasesTranscriptional factorsGene expressionMutant retinasMitochondrial activityExtracellular matrixNovel mechanismVascular maturationArteriovenous malformationsGenetic deficiencyVessel growthSmad2Mouse retinaVascular malformationsMechanistic studiesBasement membraneRetinal vascular malformationsBrown adipose TRX2 deficiency activates mtDNA-NLRP3 to impair thermogenesis and protect against diet-induced insulin resistance
Huang Y, Zhou JH, Zhang H, Canfrán-Duque A, Singh AK, Perry RJ, Shulman G, Fernandez-Hernando C, Min W. Brown adipose TRX2 deficiency activates mtDNA-NLRP3 to impair thermogenesis and protect against diet-induced insulin resistance. Journal Of Clinical Investigation 2022, 132 PMID: 35202005, PMCID: PMC9057632, DOI: 10.1172/jci148852.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsConceptsBrown adipose tissueBAT inflammationInsulin resistanceMitochondrial reactive oxygen speciesReactive oxygen speciesAberrant innate immune responsesDiet-induced insulin resistanceSystematic metabolismDiet-induced obesityNLRP3 inflammasome pathwayWhole-body energy metabolismCGAS/STINGInnate immune responseFatty acid oxidationExcessive mitochondrial reactive oxygen speciesMetabolic benefitsImmune responseInflammasome pathwayAdipose tissueInflammationInhibition reversesLipid uptakeLipid metabolismThioredoxin 2Adaptive thermogenesis
2021
CCM3 Loss-Induced Lymphatic Defect Is Mediated by the Augmented VEGFR3-ERK1/2 Signaling
Qin L, Zhang H, Li B, Jiang Q, Lopez F, Min W, Zhou JH. CCM3 Loss-Induced Lymphatic Defect Is Mediated by the Augmented VEGFR3-ERK1/2 Signaling. Arteriosclerosis Thrombosis And Vascular Biology 2021, 41: 2943-2960. PMID: 34670407, PMCID: PMC8613000, DOI: 10.1161/atvbaha.121.316707.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsMeSH KeywordsAnimalsApoptosis Regulatory ProteinsCells, CulturedEndothelial CellsEndothelium, LymphaticFemaleGene DeletionHemangioma, Cavernous, Central Nervous SystemHyperplasiaMaleMAP Kinase Signaling SystemMice, Inbred StrainsModels, AnimalNF-kappa BTranslocation, GeneticVascular Endothelial Growth Factor Receptor-3ConceptsLymphatic ECsLymphatic defectsCerebral cavernous malformationsPan-endothelial cellsGrowth factor receptorTranscriptional levelTransport assaysLymphatic hyperplasiaCCM genesLymphatic dysfunctionNuclear translocationGenesFactor receptorVEGFR3ERK1/2Nuclear factorDeletionEC proliferationInhibition of VEGFR3Dependent mannerVascular endothelial growth factor receptorEndothelial growth factor receptorEC deletionAbnormal valve structureKPNA2Caveolae-mediated Tie2 signaling contributes to CCM pathogenesis in a brain endothelial cell-specific Pdcd10-deficient mouse model
Zhou HJ, Qin L, Jiang Q, Murray KN, Zhang H, Li B, Lin Q, Graham M, Liu X, Grutzendler J, Min W. Caveolae-mediated Tie2 signaling contributes to CCM pathogenesis in a brain endothelial cell-specific Pdcd10-deficient mouse model. Nature Communications 2021, 12: 504. PMID: 33495460, PMCID: PMC7835246, DOI: 10.1038/s41467-020-20774-0.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsConceptsCerebral cavernous malformationsCCM lesionsSmooth muscle actin-positive pericytesEndothelial cell lossRegions of brainCCM pathogenesisPost-capillary venulesCerebral hemorrhagePharmacological blockadeVascular abnormalitiesEC-specific deletionCavernous malformationsMouse modelCell lossMicrovascular bedGenetic deletionLesion formationLesionsVascular dynamicsBarrier functionMicrovascular structureTwo-photon microscopyTie2PathogenesisMiceATPIF1 maintains normal mitochondrial structure which is impaired by CCM3 deficiency in endothelial cells
Wang K, Chen H, Zhou Z, Zhang H, Zhou HJ, Min W. ATPIF1 maintains normal mitochondrial structure which is impaired by CCM3 deficiency in endothelial cells. Cell & Bioscience 2021, 11: 11. PMID: 33422124, PMCID: PMC7796565, DOI: 10.1186/s13578-020-00514-z.Peer-Reviewed Original ResearchCitationsAltmetricConceptsActivation of mitophagyHuman umbilical vein endothelial cellsNormal mitochondrial structureMorphology of mitochondriaRNA-seq screeningMitochondrial membrane potentialCRISPR-Cas9 SystemCerebral cavernous malformationsEndothelial cellsExpression of KLF4Destruction of mitochondriaUmbilical vein endothelial cellsMitochondrial structureSignaling pathwaysVein endothelial cellsMitochondriaATPIF1MitophagyEndothelial progenitor cellsProgenitor cellsCell proliferationMembrane potentialKLF4PathwayProtein
2020
Mitophagy-mediated adipose inflammation contributes to type 2 diabetes with hepatic insulin resistance
He F, Huang Y, Song Z, Zhou HJ, Zhang H, Perry RJ, Shulman GI, Min W. Mitophagy-mediated adipose inflammation contributes to type 2 diabetes with hepatic insulin resistance. Journal Of Experimental Medicine 2020, 218: e20201416. PMID: 33315085, PMCID: PMC7927432, DOI: 10.1084/jem.20201416.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsMeSH KeywordsAdipocytesAdipose TissueAnimalsDiabetes Mellitus, Type 2Diet, High-FatEnergy MetabolismFatty LiverGene DeletionGene TargetingGluconeogenesisHomeostasisHumansHyperglycemiaInflammationInsulin ResistanceLipogenesisLiverMaleMice, Inbred C57BLMice, KnockoutMitochondriaMitophagyNF-kappa BOxidative StressPhenotypeReactive Oxygen SpeciesSequestosome-1 ProteinSignal TransductionThioredoxinsConceptsHepatic insulin resistanceWhite adipose tissueInsulin resistanceAdipose inflammationType 2 diabetes mellitusLipid metabolic disordersNF-κB inhibitorAdipose-specific deletionWhole-body energy homeostasisAltered fatty acid metabolismFatty acid metabolismT2DM progressionT2DM patientsDiabetes mellitusReactive oxygen species pathwayHepatic steatosisMetabolic disordersNF-κBP62/SQSTM1Adipose tissueHuman adipocytesEnergy homeostasisExcessive mitophagyOxygen species pathwayInflammationThe interaction of lead exposure and CCM3 defect plays an important role in regulating angiogenesis through eNOS/NO pathway.
Sun Y, Zhao Z, Zhang H, Li J, Chen J, Luan X, Min W, He Y. The interaction of lead exposure and CCM3 defect plays an important role in regulating angiogenesis through eNOS/NO pathway. Environmental Toxicology And Pharmacology 2020, 79: 103407. PMID: 32512318, DOI: 10.1016/j.etap.2020.103407.Peer-Reviewed Original ResearchMural Cell-Specific Deletion of Cerebral Cavernous Malformation 3 in the Brain Induces Cerebral Cavernous Malformations
Wang K, Zhang H, He Y, Jiang Q, Tanaka Y, Park IH, Pober JS, Min W, Zhou HJ. Mural Cell-Specific Deletion of Cerebral Cavernous Malformation 3 in the Brain Induces Cerebral Cavernous Malformations. Arteriosclerosis Thrombosis And Vascular Biology 2020, 40: 2171-2186. PMID: 32640906, DOI: 10.1161/atvbaha.120.314586.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsMeSH KeywordsAnimalsApoptosis Regulatory ProteinsBrainCell CommunicationCell MovementCells, CulturedCoculture TechniquesEndothelial CellsFemaleFocal AdhesionsGene DeletionGenetic Predisposition to DiseaseHemangioma, Cavernous, Central Nervous SystemHumansMaleMembrane ProteinsMice, KnockoutMicrovesselsMyocytes, Smooth MusclePaxillinPericytesPhenotypeProtein StabilityProto-Oncogene ProteinsSignal TransductionConceptsCerebral cavernous malformationsBrain mural cellsCCM lesionsMural cellsCavernous malformationsSevere brain hemorrhageCCM pathogenesisSmooth muscle cellsWeeks of ageCell-specific deletionMural cell coverageBrain pericytesBrain hemorrhageNeonatal stageBrain vasculatureLesionsEntire brainMuscle cellsCerebral cavernous malformation 3Endothelial cellsMicePericytesSpecific deletionAdhesion formationPathogenesis
News
Get In Touch
Contacts
Locations
Department of Pathology
Academic Office
Amistad Street Building
10 Amistad Street, Ste AMI 414
New Haven, CT 06519
Fax
203.737.2293Appointments
203.785.7290