Adding dimension to cellular mechanotransduction: Advances in biomedical engineering of multiaxial cell-stretch systems and their application to cardiovascular biomechanics and mechano-signaling
Friedrich O, Schneidereit D, Nikolaev Y, Nikolova-Krstevski V, Schürmann S, Wirth-Hücking A, Merten A, Fatkin D, Martinac B. Adding dimension to cellular mechanotransduction: Advances in biomedical engineering of multiaxial cell-stretch systems and their application to cardiovascular biomechanics and mechano-signaling. Progress In Biophysics And Molecular Biology 2017, 130: 170-191. PMID: 28647645, DOI: 10.1016/j.pbiomolbio.2017.06.011.Peer-Reviewed Original ResearchConceptsFocal adhesion complexesCell-substrate junctionLive-cell imagingMechanosensitive ion channelsDirect mechanistic studiesAdhesion complexesCellular mechanotransductionMembrane junctionsIntracellular signalingMechanotransduction researchCellular stretchCellular modelIon channelsCellular levelCell membraneMechanotransductionIndividual cardiomyocytesBiomedical engineeringMechanical wall stressMembraneMechanistic studiesCellsStretch deviceCardiomyocytesElastomeric membrane