2024
Glis2 is an early effector of polycystin signaling and a target for therapy in polycystic kidney disease
Zhang C, Rehman M, Tian X, Pei S, Gu J, Bell T, Dong K, Tham M, Cai Y, Wei Z, Behrens F, Jetten A, Zhao H, Lek M, Somlo S. Glis2 is an early effector of polycystin signaling and a target for therapy in polycystic kidney disease. Nature Communications 2024, 15: 3698. PMID: 38693102, PMCID: PMC11063051, DOI: 10.1038/s41467-024-48025-6.Peer-Reviewed Original ResearchConceptsMouse models of autosomal dominant polycystic kidney diseaseModel of autosomal dominant polycystic kidney diseasePolycystin signalingAutosomal dominant polycystic kidney diseasePolycystin-1Polycystic kidney diseaseTreat autosomal dominant polycystic kidney diseaseGlis2Primary ciliaKidney tubule cellsSignaling pathwayMouse modelDominant polycystic kidney diseasePotential therapeutic targetTranslatomeAntisense oligonucleotidesKidney diseasePolycystinMouse kidneyFunctional effectorsCyst formationTherapeutic targetInactivationFunctional targetPharmacological targets
2021
Renal plasticity revealed through reversal of polycystic kidney disease in mice
Dong K, Zhang C, Tian X, Coman D, Hyder F, Ma M, Somlo S. Renal plasticity revealed through reversal of polycystic kidney disease in mice. Nature Genetics 2021, 53: 1649-1663. PMID: 34635846, PMCID: PMC9278957, DOI: 10.1038/s41588-021-00946-4.Peer-Reviewed Original ResearchConceptsPKD genesAutosomal dominant polycystic kidney diseaseCyst cell proliferationGene functionPolycystic kidney diseaseCell shapeGenesKidney diseaseExtracellular matrix depositionCell proliferationKidney tubule cellsNormal lumensDominant polycystic kidney diseaseUnexpected capacityPhenotypic featuresCyst progressionMatrix depositionCellsPlasticityCyst formationCystic tubulesMyofibroblast activationProliferationSquamoid cellsKidney results
2020
Cyclin-Dependent Kinase 1 Activity Is a Driver of Cyst Growth in Polycystic Kidney Disease
Zhang C, Balbo B, Ma M, Zhao J, Tian X, Kluger Y, Somlo S. Cyclin-Dependent Kinase 1 Activity Is a Driver of Cyst Growth in Polycystic Kidney Disease. Journal Of The American Society Of Nephrology 2020, 32: 41-51. PMID: 33046531, PMCID: PMC7894654, DOI: 10.1681/asn.2020040511.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsApoptosisCatalytic DomainCDC2 Protein KinaseCell ProliferationCrosses, GeneticDNA ReplicationExome SequencingFemaleGene Expression ProfilingGene Expression RegulationMaleMiceMice, Inbred C57BLMice, KnockoutMutationPhenotypePolycystic Kidney, Autosomal DominantPyruvate Dehydrogenase Acetyl-Transferring KinaseRNA-SeqTranscription, GeneticTRPP Cation ChannelsConceptsAutosomal dominant polycystic kidney diseaseCyst cell proliferationPolycystic kidney diseaseKidney diseaseADPKD progressionCell proliferationModel of ADPKDCyst growthProgression of ADPKDDominant polycystic kidney diseaseDouble knockout miceCandidate pathwaysKidney functionCyst progressionMouse modelUnbiased transcriptional profilingProgressionCellular mechanismsKinase 1 activityCystic phenotypeSelective targetingKidneyConditional inactivationDouble knockoutProliferation
2017
Adenylyl cyclase 5 deficiency reduces renal cyclic AMP and cyst growth in an orthologous mouse model of polycystic kidney disease
Wang Q, Cobo-Stark P, Patel V, Somlo S, Han PL, Igarashi P. Adenylyl cyclase 5 deficiency reduces renal cyclic AMP and cyst growth in an orthologous mouse model of polycystic kidney disease. Kidney International 2017, 93: 403-415. PMID: 29042084, PMCID: PMC5794572, DOI: 10.1016/j.kint.2017.08.005.Peer-Reviewed Original ResearchConceptsPolycystic kidney diseaseOrthologous mouse modelSingle mutant miceMutant miceRenal epithelial cellsCyst growthCAMP levelsKidney diseaseEpithelial cellsMouse modelTreatment of PKDA-kinase anchoring protein 150Renal cyclic AMPKidneys of miceCyclic AMPDouble mutant miceRenal cAMP levelsInhibition of AC5Kidney injuryLevels of cAMPPrimary ciliaKidney enlargementKidney functionCyst indexMice
2016
Double inhibition of cAMP and mTOR signalling may potentiate the reduction of cell growth in ADPKD cells
de Stephanis L, Bonon A, Varani K, Lanza G, Gafà R, Pinton P, Pema M, Somlo S, Boletta A, Aguiari G. Double inhibition of cAMP and mTOR signalling may potentiate the reduction of cell growth in ADPKD cells. Clinical And Experimental Nephrology 2016, 21: 203-211. PMID: 27278932, PMCID: PMC5496448, DOI: 10.1007/s10157-016-1289-1.Peer-Reviewed Original ResearchMeSH KeywordsAdenosineAdenosine A3 Receptor AgonistsAnimalsCell LineCell ProliferationCREB-Binding ProteinCyclic AMPDisease Models, AnimalDrug SynergismDrug Therapy, CombinationExtracellular Signal-Regulated MAP KinasesGenetic Predisposition to DiseaseHumansKidneyMice, Inbred C57BLMice, KnockoutPhenotypePhosphorylationPolycystic Kidney, Autosomal DominantProtein Kinase InhibitorsSignal TransductionSirolimusTime FactorsTOR Serine-Threonine KinasesTRPP Cation ChannelsConceptsCl-IBADPKD patientsCell proliferationADPKD cellsActivation of A3ARCell growthAgonist Cl-IBPolycystin-1MethodsThe inhibitionCombined sequential treatmentRenal functionKidney weightAbnormal cell proliferationERK kinase activityRenal pathologyA3 receptorsInhibition of CREBKidney tissueKinase activityPolycystin-2Marked reductionDirect cell countingKidney cystsMutations of PKD1ERK phosphorylation
2015
Sec63 and Xbp1 regulate IRE1α activity and polycystic disease severity
Fedeles SV, So JS, Shrikhande A, Lee SH, Gallagher AR, Barkauskas CE, Somlo S, Lee AH. Sec63 and Xbp1 regulate IRE1α activity and polycystic disease severity. Journal Of Clinical Investigation 2015, 125: 1955-1967. PMID: 25844898, PMCID: PMC4463201, DOI: 10.1172/jci78863.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell LineDisease Models, AnimalDNA HelicasesDNA-Binding ProteinsEndoribonucleasesFemaleGlucosidasesIntracellular Signaling Peptides and ProteinsKidneyMaleMiceMice, Inbred C57BLMice, KnockoutMice, TransgenicMolecular ChaperonesPolycystic Kidney, Autosomal DominantPolycystic Kidney, Autosomal RecessiveProtein Serine-Threonine KinasesProtein Structure, TertiaryReceptors, G-Protein-CoupledRecombinant Fusion ProteinsRegulatory Factor X Transcription FactorsRNA SplicingRNA, Small InterferingRNA-Binding ProteinsTranscription FactorsTransfectionTRPP Cation ChannelsUnfolded Protein ResponseX-Box Binding Protein 1ConceptsG protein-coupled receptor proteolysis siteCyst formationPolycystic liver diseaseGPS cleavagePolycystin-1IRE1α-XBP1 branchMurine genetic modelsPolycystic kidney phenotypeLiver diseasePolycystic diseaseCystic diseaseDisease manifestationsMurine modelDisease severityKidney phenotypeXBP1 activationUnfolded protein response pathwayDiseaseXBP1 overexpressionPC1 functionsProtein response pathwayEnforced expressionMiceXBP1Activation of XBP1