2017
Guidelines for Genome-Scale Analysis of Biological Rhythms
Hughes ME, Abruzzi KC, Allada R, Anafi R, Arpat AB, Asher G, Baldi P, de Bekker C, Bell-Pedersen D, Blau J, Brown S, Ceriani MF, Chen Z, Chiu JC, Cox J, Crowell AM, DeBruyne JP, Dijk DJ, DiTacchio L, Doyle FJ, Duffield GE, Dunlap JC, Eckel-Mahan K, Esser KA, FitzGerald GA, Forger DB, Francey LJ, Fu YH, Gachon F, Gatfield D, de Goede P, Golden SS, Green C, Harer J, Harmer S, Haspel J, Hastings MH, Herzel H, Herzog ED, Hoffmann C, Hong C, Hughey JJ, Hurley JM, de la Iglesia HO, Johnson C, Kay SA, Koike N, Kornacker K, Kramer A, Lamia K, Leise T, Lewis SA, Li J, Li X, Liu AC, Loros JJ, Martino TA, Menet JS, Merrow M, Millar AJ, Mockler T, Naef F, Nagoshi E, Nitabach MN, Olmedo M, Nusinow DA, Ptáček LJ, Rand D, Reddy AB, Robles MS, Roenneberg T, Rosbash M, Ruben MD, Rund SSC, Sancar A, Sassone-Corsi P, Sehgal A, Sherrill-Mix S, Skene DJ, Storch KF, Takahashi JS, Ueda HR, Wang H, Weitz C, Westermark PO, Wijnen H, Xu Y, Wu G, Yoo SH, Young M, Zhang EE, Zielinski T, Hogenesch JB. Guidelines for Genome-Scale Analysis of Biological Rhythms. Journal Of Biological Rhythms 2017, 32: 380-393. PMID: 29098954, PMCID: PMC5692188, DOI: 10.1177/0748730417728663.Peer-Reviewed Original ResearchConceptsGenome-scale analysisGenome-scale dataGenome-scale experimentsBiological rhythmsBiology approachBiology dataFuture discoveriesObvious consensusDifferent experimental designsProductive avenuesRNAProteinAbundanceComputational modelingPrimary literatureEnormous contributionClockDiscoveryRhythmMetabolitesMembrane Currents, Gene Expression, and Circadian Clocks
Allen CN, Nitabach MN, Colwell CS. Membrane Currents, Gene Expression, and Circadian Clocks. Cold Spring Harbor Perspectives In Biology 2017, 9: a027714. PMID: 28246182, PMCID: PMC5411696, DOI: 10.1101/cshperspect.a027714.Peer-Reviewed Original ResearchConceptsCircadian clockGene ClockMembrane electrical activityCyclic adenosine monophosphateCircadian clock neuronsCircadian outputClock neuronsGenetic clockGene expressionCircadian oscillatorIntracellular CaAdenosine monophosphateFeedback loopPathwayClockHuman healthAction potential firing patternsMammalianActivityAction potential firingNightly reductionsMultiple typesExpressionMembrane currentsCircadian pattern
2013
O-GlcNAc Signaling Entrains the Circadian Clock by Inhibiting BMAL1/CLOCK Ubiquitination
Li MD, Ruan HB, Hughes ME, Lee JS, Singh JP, Jones SP, Nitabach MN, Yang X. O-GlcNAc Signaling Entrains the Circadian Clock by Inhibiting BMAL1/CLOCK Ubiquitination. Cell Metabolism 2013, 17: 303-310. PMID: 23395176, PMCID: PMC3647362, DOI: 10.1016/j.cmet.2012.12.015.Peer-Reviewed Original ResearchConceptsCircadian clockProtein modificationNutrient-sensing pathwaysO-GlcNAc signalingHexosamine biosynthesis pathwayCovalent protein modificationBiosynthesis pathwayGlcNAc transferaseNutritional signalsClock oscillationsO-GlcNAcylationAberrant circadian rhythmsClock targetsOGT expressionCircadian oscillationsUbiquitinationN-acetylglucosamineNutrient fluxesMetabolic oscillationsBMAL1GenesPathwayCircadian rhythmKey mechanismClock
2011
Insect circadian clock outputs
Helfrich-Förster C, Nitabach MN, Holmes TC. Insect circadian clock outputs. Essays In Biochemistry 2011, 49: 87-101. PMID: 21819386, DOI: 10.1042/bse0490087.Peer-Reviewed Original ResearchConceptsClock neuronsDaily rhythmsCircadian clock outputBrain clockCellular clocksDrosophila fliesCircadian timekeeping systemCircadian outputEnvironmental cuesClock outputMigratory locustInsectsTimekeeping systemCircadian rhythmicitySubstantial similarityClockImpressive varietyButterfliesLocal environmentFliesClock circuitEntire lifeLocustTimekeeperPhysiology