2016
Investigation of peanut oral immunotherapy with CpG/peanut nanoparticles in a murine model of peanut allergy
Srivastava KD, Siefert A, Fahmy TM, Caplan MJ, Li XM, Sampson HA. Investigation of peanut oral immunotherapy with CpG/peanut nanoparticles in a murine model of peanut allergy. Journal Of Allergy And Clinical Immunology 2016, 138: 536-543.e4. PMID: 27130858, DOI: 10.1016/j.jaci.2016.01.047.Peer-Reviewed Original ResearchConceptsPeanut oral immunotherapyOral peanut challengesPeanut-specific immunotherapyPeanut allergyOral immunotherapyPeanut challengeSymptom scoresRecall responsesMurine modelSplenocyte culturesHistamine levelsPeanut-specific serum IgEC3H/HeJ miceIFN-γ levelsPlasma histamine levelsVehicle control animalsCytokine recall responsesLower symptom scoresBody temperatureCurrent clinical approachesOral sensitizationWeekly gavageIgG2a levelsSublingual immunotherapySerum IgEArtificial bacterial biomimetic nanoparticles synergize pathogen-associated molecular patterns for vaccine efficacy
Siefert AL, Caplan MJ, Fahmy TM. Artificial bacterial biomimetic nanoparticles synergize pathogen-associated molecular patterns for vaccine efficacy. Biomaterials 2016, 97: 85-96. PMID: 27162077, PMCID: PMC5999034, DOI: 10.1016/j.biomaterials.2016.03.039.Peer-Reviewed Original ResearchConceptsMonophosphoryl lipid APathogen-associated molecular patternsT cell responsesToll-like receptorsAntigen-specific T-helper 1Antigen-specific T cell responsesCell responsesMolecular patternsAntibody-mediated responsesT helper 1Model antigen ovalbuminBacterial pathogen-associated molecular patternsCytokine profileAntigen-loaded nanoparticlesTLR ligandsCellular immunityHelper 1Vaccine efficacyAntigen ovalbuminVaccine platformImmune responseNanoparticulate vaccinesLipid AOvalbuminCpG
2010
TLR9-Targeted Biodegradable Nanoparticles as Immunization Vectors Protect against West Nile Encephalitis
Demento SL, Bonafé N, Cui W, Kaech SM, Caplan MJ, Fikrig E, Ledizet M, Fahmy TM. TLR9-Targeted Biodegradable Nanoparticles as Immunization Vectors Protect against West Nile Encephalitis. The Journal Of Immunology 2010, 185: 2989-2997. PMID: 20660705, PMCID: PMC3753007, DOI: 10.4049/jimmunol.1000768.Peer-Reviewed Original ResearchConceptsBiodegradable nanoparticlesUnmodified nanoparticlesImmune responseNanoparticlesCell-mediated immune responsesRobust humoral responseTh1 immune responseEffector T cellsAg-specific lymphocytesTh2-biased responsesAdjuvant aluminum hydroxideWest Nile encephalitisVirus encephalitisWest Nile virusAgHumoral responseCpG oligodeoxynucleotideT cellsMouse modelLive virusInfectious agentsProtein AgVaccine developmentWN virusNile virus
2009
Partial Correction of Cystic Fibrosis Defects with PLGA Nanoparticles Encapsulating Curcumin
Cartiera MS, Ferreira EC, Caputo C, Egan ME, Caplan MJ, Saltzman WM. Partial Correction of Cystic Fibrosis Defects with PLGA Nanoparticles Encapsulating Curcumin. Molecular Pharmaceutics 2009, 7: 86-93. PMID: 19886674, PMCID: PMC2815009, DOI: 10.1021/mp900138a.Peer-Reviewed Original ResearchAdministration, OralAnimalsBiological AvailabilityBiological Transport, ActiveCurcuminCystic FibrosisCystic Fibrosis Transmembrane Conductance RegulatorEnzyme InhibitorsHumansLactic AcidMiceMice, Inbred C57BLMice, Inbred CFTRMicroscopy, Electron, ScanningMutationNanoparticlesPolyglycolic AcidPolylactic Acid-Polyglycolic Acid CopolymerSarcoplasmic Reticulum Calcium-Transporting ATPasesInflammasome-activating nanoparticles as modular systems for optimizing vaccine efficacy
Demento SL, Eisenbarth SC, Foellmer HG, Platt C, Caplan MJ, Saltzman W, Mellman I, Ledizet M, Fikrig E, Flavell RA, Fahmy TM. Inflammasome-activating nanoparticles as modular systems for optimizing vaccine efficacy. Vaccine 2009, 27: 3013-3021. PMID: 19428913, PMCID: PMC2695996, DOI: 10.1016/j.vaccine.2009.03.034.Peer-Reviewed Original ResearchMeSH KeywordsAdjuvants, ImmunologicAnimalsAntibody FormationCarrier ProteinsCD8-Positive T-LymphocytesDendritic CellsLactic AcidLipopolysaccharidesMiceMice, Inbred C57BLNanoparticlesNLR Family, Pyrin Domain-Containing 3 ProteinPolyglycolic AcidPolylactic Acid-Polyglycolic Acid CopolymerVaccinationViral Envelope ProteinsWest Nile FeverWest Nile Virus VaccinesConceptsPattern recognition receptorsToll-like receptorsInflammasome activationInnate immune system activationEffective adaptive immune responseIntracellular pattern recognition receptorsAntigen-presenting cellsAdaptive immune responsesWest Nile encephalitisImmune system activationInnate immune pathwaysWild-type macrophagesDendritic cellsCellular immunityVaccination approachesVaccine efficacyIL-1betaNLRP3 inflammasomeAdjuvant systemImmune responsePotent new approachMurine modelInflammasome activitySystem activationImmune pathwaysThe uptake and intracellular fate of PLGA nanoparticles in epithelial cells
Cartiera MS, Johnson KM, Rajendran V, Caplan MJ, Saltzman WM. The uptake and intracellular fate of PLGA nanoparticles in epithelial cells. Biomaterials 2009, 30: 2790-2798. PMID: 19232712, PMCID: PMC3195413, DOI: 10.1016/j.biomaterials.2009.01.057.Peer-Reviewed Original ResearchConceptsEpithelial cellsCell linesRenal proximal tubulesType of epitheliumParticle/cell ratiosCaco-2 cellsEpithelial cell lineIntracellular fateProximal tubulesRespiratory airwaysCell ratioImmunofluorescence techniqueOK cellsDifferent epithelial cell linesEndoplasmic reticulumConfocal analysisMajor targetConfocal microscopyExtent of uptakeCellsParticle uptakeEarly endosomesCellular uptakePLGA nanoparticlesUptake