2024
Small molecules targeting selective PCK1 and PGC-1α lysine acetylation cause anti-diabetic action through increased lactate oxidation
Mutlu B, Sharabi K, Sohn J, Yuan B, Latorre-Muro P, Qin X, Yook J, Lin H, Yu D, Camporez J, Kajimura S, Shulman G, Hui S, Kamenecka T, Griffin P, Puigserver P. Small molecules targeting selective PCK1 and PGC-1α lysine acetylation cause anti-diabetic action through increased lactate oxidation. Cell Chemical Biology 2024, 31: 1772-1786.e5. PMID: 39341205, PMCID: PMC11500315, DOI: 10.1016/j.chembiol.2024.09.001.Peer-Reviewed Original ResearchPhosphoenolpyruvate carboxykinase 1Lysine acetylationTricarboxylic acidAnti-diabetic effectsAnaplerotic reactionsGluconeogenic reactionsLiver-specific expressionGluconeogenic metabolitesLactate oxidationSmall moleculesAnti-diabetic actionSuppressed gluconeogenesisHepatic glucose productionPGC-1aAcetylationOxaloacetateGluconeogenesisObese miceGlucose productionIncreased glucoseGlucose oxidationSubstrate oxidationOxidationGlucoseMutantsCeramide synthesis inhibitors prevent lipid-induced insulin resistance through the DAG-PKCε-insulin receptorT1150 phosphorylation pathway
Xu W, Zhang D, Ma Y, Gaspar R, Kahn M, Nasiri A, Murray S, Samuel V, Shulman G. Ceramide synthesis inhibitors prevent lipid-induced insulin resistance through the DAG-PKCε-insulin receptorT1150 phosphorylation pathway. Cell Reports 2024, 43: 114746. PMID: 39302831, DOI: 10.1016/j.celrep.2024.114746.Peer-Reviewed Original ResearchLipid-induced hepatic insulin resistanceHepatic insulin resistancePhosphorylation pathwayAntisense oligonucleotidesCeramide synthesis inhibitorsLipid-induced insulin resistanceMyriocin treatmentCeramide synthesisDihydroceramide desaturaseInsulin resistanceHepatic ceramideMyriocinCeramideCeramide contentInsulin-sensitizing effectsPhosphorylationHepatic insulin sensitivityPathwaySynthetic pathwayDES1Glucose productionSynthesis inhibitorDGAT2DesaturaseInhibitionGlucagon promotes increased hepatic mitochondrial oxidation and pyruvate carboxylase flux in humans with fatty liver disease
Petersen K, Dufour S, Mehal W, Shulman G. Glucagon promotes increased hepatic mitochondrial oxidation and pyruvate carboxylase flux in humans with fatty liver disease. Cell Metabolism 2024, 36: 2359-2366.e3. PMID: 39197461, DOI: 10.1016/j.cmet.2024.07.023.Peer-Reviewed Original Research
2023
222-OR: Metformin Reduces Fasting Glycemia in Well-Controlled Type 2 Diabetes by Promoting Aerobic Glycolysis Independent of Decreasing Endogenous Glucose Production
SARABHAI T, LAMOIA T, FRIESL S, JONUSCHEIT M, PETERSEN K, SHULMAN G, RODEN M. 222-OR: Metformin Reduces Fasting Glycemia in Well-Controlled Type 2 Diabetes by Promoting Aerobic Glycolysis Independent of Decreasing Endogenous Glucose Production. Diabetes 2023, 72 DOI: 10.2337/db23-222-or.Peer-Reviewed Original ResearchEndogenous glucose productionRates of EGPType 2 diabetesHepatic ATP contentMetformin treatmentGlucose clearanceNovo NordiskGlucose productionGlycogen contentGlucose-lowering effectHepatic TAG contentLactate productionBlood glucose levelsPlasma glucose concentrationPeripheral glucose clearanceHepatic glycogen contentATP contentAdvisory PanelFortress BiotechMetformin-induced inhibitionGlycemic controlDohme Corp.Hepatic triglyceridesMitochondrial electron transport chain activityGlucose levels
2021
282-OR: The Effect of Glucagon on Rates of Hepatic Mitochondrial Oxidation and Pyruvate Carboxylase Flux in Man Assessed by Positional Isotopomer NMR Tracer Analysis (PINTA)
PETERSEN K, SHULMAN G. 282-OR: The Effect of Glucagon on Rates of Hepatic Mitochondrial Oxidation and Pyruvate Carboxylase Flux in Man Assessed by Positional Isotopomer NMR Tracer Analysis (PINTA). Diabetes 2021, 70 DOI: 10.2337/db21-282-or.Peer-Reviewed Original ResearchHepatic mitochondrial oxidationPhysiological increaseSpouse/partnerDual agonistsGilead SciencesJanssen ResearchTreatment of T2DPlasma glucagon concentrationsNovo NordiskMitochondrial oxidationEffect of glucagonPyruvate carboxylase fluxMitochondrial fat oxidationAnorexic effectGlucagon concentrationsHepatic steatosisClinical trialsC-peptideGLP-1Food intakeHealthy volunteersFat oxidationIonis PharmaceuticalsGlucagonGlucose production281-OR: Endothelial Cell Cd36 Regulates Systemic Glucose and Lipid Metabolism
GOEDEKE L, SON N, LAMOIA T, NASIRI A, KAHN M, ZHANG X, CLINE G, GOLDBERG I, SHULMAN G. 281-OR: Endothelial Cell Cd36 Regulates Systemic Glucose and Lipid Metabolism. Diabetes 2021, 70 DOI: 10.2337/db21-281-or.Peer-Reviewed Original ResearchFatty acid uptakeLong-chain fatty acid uptakeAcid uptakeEndothelial cell CD36EC-specific deletionDifferent cell typesInsulin-stimulated glucose uptakeLipid metabolismWhole-body glucose toleranceTransmembrane proteinTissue fatty acid uptakeWhole-body insulin sensitivityEndothelial cellsHepatic glucose productionCell typesInsulin sensitivityGlucose transportSystemic glucoseSkeletal muscleCD36Glucose uptakeWhole-body fat utilizationGlucose productionSynthase fluxNon-esterified fatty acid levels
2020
Hepatic Insulin Resistance Is Not Pathway Selective in Humans With Nonalcoholic Fatty Liver Disease.
Ter Horst KW, Vatner DF, Zhang D, Cline GW, Ackermans MT, Nederveen AJ, Verheij J, Demirkiran A, van Wagensveld BA, Dallinga-Thie GM, Nieuwdorp M, Romijn JA, Shulman GI, Serlie MJ. Hepatic Insulin Resistance Is Not Pathway Selective in Humans With Nonalcoholic Fatty Liver Disease. Diabetes Care 2020, 44: 489-498. PMID: 33293347, PMCID: PMC7818337, DOI: 10.2337/dc20-1644.Peer-Reviewed Original ResearchConceptsNonalcoholic fatty liver diseaseDe novo lipogenesisFatty liver diseaseBariatric surgeryLiver diseaseImpaired insulin-mediated suppressionGlucose productionHepatic de novo lipogenesisPeripheral glucose metabolismHyperinsulinemic-euglycemic clampType 2 diabetesInsulin-mediated suppressionInsulin-resistant subjectsHepatic insulin resistanceLiver biopsy samplesSuppress glucose productionLipogenic transcription factorsInsulin-mediated regulationObese subjectsInsulin resistanceAcute increaseNovo lipogenesisGlucose metabolismBiopsy samplesParadoxical increase
2019
Distinct Hepatic PKA and CDK Signaling Pathways Control Activity-Independent Pyruvate Kinase Phosphorylation and Hepatic Glucose Production
Gassaway BM, Cardone RL, Padyana AK, Petersen MC, Judd ET, Hayes S, Tong S, Barber KW, Apostolidi M, Abulizi A, Sheetz JB, Kshitiz, Aerni HR, Gross S, Kung C, Samuel VT, Shulman GI, Kibbey RG, Rinehart J. Distinct Hepatic PKA and CDK Signaling Pathways Control Activity-Independent Pyruvate Kinase Phosphorylation and Hepatic Glucose Production. Cell Reports 2019, 29: 3394-3404.e9. PMID: 31825824, PMCID: PMC6951436, DOI: 10.1016/j.celrep.2019.11.009.Peer-Reviewed Original ResearchConceptsCyclin-dependent kinasesMetabolic control pointPhosphorylation sitesNuclear retentionCDK activityPKL activityDays high-fat dietKinase phosphorylationImportant enzymePyruvate kinaseHigh-fat dietS113KinaseEnzyme kineticsPhosphorylationAdditional control pointsRegulationGlucose productionHepatic glucose productionInsulin resistanceGlycolysisEnzymePKAPathwayActivity266-OR: Plasma Membrane sn-1,2 Diacylglycerol Mediates Lipid-Induced Hepatic Insulin Resistance
LYU K, ZHANG Y, ZHANG D, KAHN M, NOZAKI Y, BHANOT S, BOGAN J, CLINE G, SAMUEL V, SHULMAN G. 266-OR: Plasma Membrane sn-1,2 Diacylglycerol Mediates Lipid-Induced Hepatic Insulin Resistance. Diabetes 2019, 68 DOI: 10.2337/db19-266-or.Peer-Reviewed Original ResearchHepatic insulin resistanceInsulin resistanceExogenous fatty acidsInsulin actionLipid dropletsHepatic ceramide contentHyperinsulinemic-euglycemic clampHepatic insulin actionBioactive lipid speciesHepatic glucose productionChow-fed ratsHepatic diacylglycerol contentAdvisory PanelFatty acidsHepatic steatosisImpaired suppressionSingle doseSpouse/partnerGlucose productionPKCε activationJanssen ResearchAcute knockdownCeramide contentNational InstituteReceptor kinase activation
2018
Membrane sn-1,2 Diacylglycerol Mediates Lipid-Induced Hepatic Insulin Resistance In Vivo
LYU K, ZHANG D, NOZAKI Y, ZHANG Y, BHANOT S, CLINE G, SAMUEL V, SHULMAN G. Membrane sn-1,2 Diacylglycerol Mediates Lipid-Induced Hepatic Insulin Resistance In Vivo. Diabetes 2018, 67 DOI: 10.2337/db18-243-lb.Peer-Reviewed Original ResearchHepatic insulin resistanceLipid-induced hepatic insulin resistanceDiglyceride acyltransferase 2Hepatic DAG contentInsulin resistanceHepatic insulin sensitivityInsulin sensitivityImpaired insulin-mediated suppressionActivation/translocationDGAT2 inhibitionAntisense oligonucleotideRegular chow dietInsulin-mediated suppressionHepatic insulin actionHepatic glucose productionInsulin receptor kinaseDAG contentChow dietASO treatmentIonis PharmaceuticalsInsulin actionGlucose productionPKCε activationSREBP-1cGilead SciencesMechanism by Which Dapagliflozin Induces Euglycemic Ketoacidosis in Rats
PERRY R, SONG J, WANG Y, SHULMAN G. Mechanism by Which Dapagliflozin Induces Euglycemic Ketoacidosis in Rats. Diabetes 2018, 67 DOI: 10.2337/db18-254-or.Peer-Reviewed Original ResearchSodium-glucose transport protein 2 inhibitorsHepatic glucose productionEffect of dapagliflozinEuglycemic ketoacidosisHepatic ketogenesisVolume depletionGlucose productionPlasma catecholaminesWhite adipose tissue lipolysisPlasma glucagon concentrationsExtracellular volume depletionPlasma insulin levelsAdipose tissue lipolysisPlasma insulin concentrationHepatic acetyl-CoA contentNormal Sprague-DawleyICV injectionWAT lipolysisInsulin levelsFurosemide treatmentGlucagon concentrationsAcetyl-CoA contentSaline infusionTissue lipolysisInsulin concentrations
2001
Regulation of Hepatic Glucose Uptake
Taylor R, Shulman G. Regulation of Hepatic Glucose Uptake. 2001, 787-802. DOI: 10.1002/cphy.cp070226.Peer-Reviewed Original ResearchHepatic glucose productionHepatic glucose uptakeGlucose productionGlucose uptakeHepatic glycogen storageLiver glycogen storesHepatic glycogen contentGlycogen storage diseaseNormal diurnal fluctuationsPortal signalPostprandial statePostabsorptive stateGlycogen storesGlycogen contentGlucagon regulationGlycogen storageHomeostatic mechanismsStorage diseaseGlycogen synthesisEarly adaptationMetabolismGlucose carbonCirrhosisGlucose toxicity and the development of diabetes in mice with muscle-specific inactivation of GLUT4
Kim J, Zisman A, Fillmore J, Peroni O, Kotani K, Perret P, Zong H, Dong J, Kahn C, Kahn B, Shulman G. Glucose toxicity and the development of diabetes in mice with muscle-specific inactivation of GLUT4. Journal Of Clinical Investigation 2001, 108: 153-160. PMID: 11435467, PMCID: PMC353719, DOI: 10.1172/jci10294.Peer-Reviewed Original ResearchMeSH KeywordsAdipose TissueAge of OnsetAnimalsDepression, ChemicalDiabetes Mellitus, Type 2Disease Models, AnimalGlucoseGlucose Transporter Type 4HyperglycemiaInsulinInsulin Infusion SystemsInsulin ResistanceKidney TubulesLiverMaleMiceMice, KnockoutMonosaccharide Transport ProteinsMuscle ProteinsMuscle, SkeletalPhlorhizinPrediabetic StateProtein TransportConceptsDevelopment of diabetesMuscle glucose uptakeKO miceHepatic glucose productionInsulin-stimulated glucose uptakeGlucose toxicityMuscle-specific inactivationGlucose uptakeAdipose tissueInsulin-stimulated muscle glucose uptakeGlucose productionWhole-body glucose uptakeSkeletal muscle glucose uptakeAdipose tissue glucose uptakeSuppress hepatic glucose productionTissue glucose uptakeHyperinsulinemic-euglycemic clampMuscle glucose transportInsulin resistanceTransgenic miceDiabetes phenotypeInsulin actionPhloridzin treatmentInsulin's abilityDiabetesTissue-specific overexpression of lipoprotein lipase causes tissue-specific insulin resistance
Kim J, Fillmore J, Chen Y, Yu C, Moore I, Pypaert M, Lutz E, Kako Y, Velez-Carrasco W, Goldberg I, Breslow J, Shulman G. Tissue-specific overexpression of lipoprotein lipase causes tissue-specific insulin resistance. Proceedings Of The National Academy Of Sciences Of The United States Of America 2001, 98: 7522-7527. PMID: 11390966, PMCID: PMC34701, DOI: 10.1073/pnas.121164498.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBlood GlucoseFatty Acids, NonesterifiedGlucagonGlucoseGlucose Clamp TechniqueGlucose Tolerance TestHeterozygoteInsulinInsulin Receptor Substrate ProteinsInsulin ResistanceLeptinLipoprotein LipaseLiverMiceMice, KnockoutMice, TransgenicMuscle, SkeletalOrgan SpecificityPhosphatidylinositol 3-KinasesPhosphoproteinsSignal TransductionTriglyceridesConceptsInsulin resistanceFatty acid-derived metabolitesInsulin actionTriglyceride contentType 2 diabetes mellitusInsulin activationLipoprotein lipaseInsulin receptor substrate-1-associated phosphatidylinositolMuscle triglyceride contentSkeletal muscleTissue-specific insulin resistanceLiver triglyceride contentAdipocyte-derived hormoneHyperinsulinemic-euglycemic clampEndogenous glucose productionLiver-specific overexpressionTissue-specific overexpressionInsulin-stimulated glucose uptakeDiabetes mellitusTissue-specific increaseTransgenic miceGlucose productionFat metabolismGlucose uptakeInsulinEffect of 5-Aminoimidazole-4-Carboxamide-1-β-d-Ribofuranoside Infusion on In Vivo Glucose and Lipid Metabolism in Lean and Obese Zucker Rats
Bergeron R, Previs S, Cline G, Perret P, Russell III R, Young L, Shulman G. Effect of 5-Aminoimidazole-4-Carboxamide-1-β-d-Ribofuranoside Infusion on In Vivo Glucose and Lipid Metabolism in Lean and Obese Zucker Rats. Diabetes 2001, 50: 1076-1082. PMID: 11334411, DOI: 10.2337/diabetes.50.5.1076.Peer-Reviewed Original ResearchMeSH KeywordsAdenylate KinaseAminoimidazole CarboxamideAnimalsBlood GlucoseBody WeightFatty Acids, NonesterifiedGlucoseGlycerolInfusions, IntravenousInjections, IntravenousInsulinInsulin ResistanceLactatesMaleModels, AnimalMuscle, SkeletalObesityRatsRats, ZuckerReference ValuesRibonucleotidesTriglyceridesConceptsWhole-body glucose disposalInsulin-resistant rat modelObese ratsEndogenous glucose productionObese Zucker ratsRed gastrocnemius muscleInsulin infusion rateLean ratsGlucose disposalInsulin infusionRat modelInfusion rateGastrocnemius muscleZucker ratsLipid metabolismGlucose productionEndogenous glucose production rateGlucose transport activitySkeletal muscle glucose transport activityType 2 diabetesWhole-body carbohydrateInsulin-stimulated glucose uptakeInsulin-independent pathwaySkeletal muscle AMPKGlucose production rate
2000
Contrasting Effects of IRS-1 Versus IRS-2 Gene Disruption on Carbohydrate and Lipid Metabolism in Vivo *
Previs S, Withers D, Ren J, White M, Shulman G. Contrasting Effects of IRS-1 Versus IRS-2 Gene Disruption on Carbohydrate and Lipid Metabolism in Vivo *. Journal Of Biological Chemistry 2000, 275: 38990-38994. PMID: 10995761, DOI: 10.1074/jbc.m006490200.Peer-Reviewed Original ResearchMeSH KeywordsAdipose TissueAnimalsCarbohydrate MetabolismFatty Acids, NonesterifiedFood DeprivationGas Chromatography-Mass SpectrometryGlucoseGlycerolInsulinInsulin Receptor Substrate ProteinsIntracellular Signaling Peptides and ProteinsLipid MetabolismLiverMaleMiceMusclesMutationPhenotypePhosphoproteinsRadioimmunoassayTime FactorsConceptsLipid metabolismInsulin resistanceIRS-2Glucose utilizationPlasma free fatty acid concentrationsWhole-body glucose utilizationGlycerol turnoverFree fatty acid concentrationsMarked insulin resistancePeripheral glucose metabolismPeripheral glucose utilizationHyperinsulinemic-euglycemic clampEndogenous glucose productionIRS-1Effect of insulinHepatic glycogen synthesisWT miceFatty acid concentrationsInsulin receptor substrateGlucose metabolismFasted miceAdipose tissueReduced suppressionGlucose productionMiceLoss of Insulin Signaling in Hepatocytes Leads to Severe Insulin Resistance and Progressive Hepatic Dysfunction
Michael M, Kulkarni R, Postic C, Previs S, Shulman G, Magnuson M, Kahn C. Loss of Insulin Signaling in Hepatocytes Leads to Severe Insulin Resistance and Progressive Hepatic Dysfunction. Molecular Cell 2000, 6: 87-97. PMID: 10949030, DOI: 10.1016/s1097-2765(05)00015-8.Peer-Reviewed Original ResearchConceptsInsulin resistanceGlucose homeostasisInsulin receptor knockout miceLiver-specific insulin receptor knockout miceDirect insulin actionNormal hepatic functionProgressive hepatic dysfunctionReceptor knockout miceSevere glucose intoleranceSevere insulin resistanceHepatic glucose productionFailure of insulinLoss of insulinHepatic gene expressionHepatic dysfunctionGlucose intoleranceMarked hyperinsulinemiaCre-loxP systemInsulin clearanceHepatic functionInsulin secretionInsulin receptor geneKnockout miceInsulin actionGlucose production
1999
Cellular mechanisms of insulin resistance in humans
Shulman G. Cellular mechanisms of insulin resistance in humans. The American Journal Of Cardiology 1999, 84: 3-10. PMID: 10418851, DOI: 10.1016/s0002-9149(99)00350-1.Peer-Reviewed Original ResearchConceptsType 2 diabetesInsulin resistanceMuscle glycogen synthesisFree fatty acidsGlucose productionHepatic gluconeogenesisInsulin-stimulated glucose metabolismInsulin-stimulated muscle glycogen synthesisBetter glucose controlCellular mechanismsHepatic glucose productionLiver glycogen concentrationGlycogen synthesisPathophysiologic defectsCombination therapyGlucose controlInsulin secretionInsulin receptor substrateHyperinsulinemic clampingPeripheral tissuesGlucose clearanceFFA levelsGlucose metabolismThiazolidinedione troglitazoneDiabetesContributions of net hepatic glycogenolysis and gluconeogenesis to glucose production in cirrhosis
Petersen K, Krssak M, Navarro V, Chandramouli V, Hundal R, Schumann W, Landau B, Shulman G. Contributions of net hepatic glycogenolysis and gluconeogenesis to glucose production in cirrhosis. American Journal Of Physiology 1999, 276: e529-e535. PMID: 10070020, DOI: 10.1152/ajpendo.1999.276.3.e529.Peer-Reviewed Original ResearchConceptsNet hepatic glycogenolysisCirrhotic subjectsHepatic glycogenolysisControl subjectsGlucose productionFree insulin-like growth factor IInsulin-like growth factor IHepatic glycogen concentrationGrowth factor IHepatic glycogen contentMagnetic resonance imagingRate of gluconeogenesisBlood glucosePlasma levelsHealthy subjects
1998
Efficacy and Metabolic Effects of Metformin and Troglitazone in Type II Diabetes Mellitus
Inzucchi S, Maggs D, Spollett G, Page S, Rife F, Walton V, Shulman G. Efficacy and Metabolic Effects of Metformin and Troglitazone in Type II Diabetes Mellitus. New England Journal Of Medicine 1998, 338: 867-873. PMID: 9516221, DOI: 10.1056/nejm199803263381303.Peer-Reviewed Original ResearchConceptsEndogenous glucose productionPlasma glucose concentrationPostprandial plasma glucose concentrationsPeripheral glucose disposalType 2 diabetesMetformin therapyTroglitazone therapyGlucose disposalGlucose productionHemoglobin valuesGlucose concentrationType II diabetes mellitusAdditive beneficial effectsSingle-drug therapyDiabetes mellitusGlycemic controlCombination therapyPoor responseMetabolic effectsPhysiologic effectsMetforminPatientsTherapyTroglitazoneBeneficial effects