Feng Li
Associate Research ScientistCards
About
Research
Publications
2024
Molecular structure of enzyme-synthesized amylose-like chimeric isomaltomegalosaccharides and their encapsulation of the sulfasalazine prodrug
Lang W, Yuguchi Y, Ke C, Chang T, Kumagai Y, Kaenying W, Tagami T, Li F, Yamamoto T, Tajima K, Takahashi K, Isono T, Satoh T, Kimura A. Molecular structure of enzyme-synthesized amylose-like chimeric isomaltomegalosaccharides and their encapsulation of the sulfasalazine prodrug. Carbohydrate Polymers 2024, 349: 122956. PMID: 39638501, DOI: 10.1016/j.carbpol.2024.122956.Peer-Reviewed Original ResearchX-ray scatteringWide-angle X-ray scatteringSmall-angle X-ray scatteringPhase solubility assaysDynamic light scatteringMolecular structureCrystal structureReducing endChain lengthBinding affinityLight scatteringNonreducing terminalPresence of SZGlucoconjugatesMulti-angle dynamic light scatteringB-type crystal structureStructureConstants nCrystalline patternEncapsulationCrystallinityCrystalDrug encapsulationScatteringMoleculesPoly(butylene succinate) reinforced by small amount of grafted nanofibrillated bacterial cellulose: Toughness variability based on nanocomposites preparation method
Hashim H, Xia X, Kani H, Seno S, Li F, Isono T, Yamamoto T, Tani H, Satoh T, Tajima K. Poly(butylene succinate) reinforced by small amount of grafted nanofibrillated bacterial cellulose: Toughness variability based on nanocomposites preparation method. Composites Part A Applied Science And Manufacturing 2024, 185: 108341. DOI: 10.1016/j.compositesa.2024.108341.Peer-Reviewed Original ResearchMelt-kneadedNanofibrillated bacterial cellulosePolybutylene succinateSolvent castingHydroxypropyl celluloseNanocomposite preparation methodBacterial celluloseLow mechanical performanceMechanical performanceFlexural strengthPoly(butylene succinateReinforcing agentYoung's modulusNanocompositesBiodegradable polymersToughnessCompost biodegradation testsSurface compatibilityBiodegradation testsModulusPreparation methodDispersing agentHydrophobic moietiesCellulose-producing bacteriumCellulosePolyester Adhesives via One-Pot, One-Step Copolymerization of Cyclic Anhydride, Epoxide, and Lactide
Suzuki R, Miwa T, Nunokawa R, Sumi A, Ando M, Takahashi K, Takagi A, Yamamoto T, Tajima K, Li F, Isono T, Satoh T. Polyester Adhesives via One-Pot, One-Step Copolymerization of Cyclic Anhydride, Epoxide, and Lactide. Polymers 2024, 16: 2767. PMID: 39408477, PMCID: PMC11479215, DOI: 10.3390/polym16192767.Peer-Reviewed Original ResearchRing-opening alternating copolymerizationRing-opening polymerizationButylene oxideL-lactideOne-potGlutaric anhydrideRing-opening polymerization of l-lactideOne-step copolymerizationSelf-switchable polymerizationPolymer structural parametersPoly(l-lactideBio-based monomersCyclic anhydridesHot melt adhesivesAdhesion strengthMonomer combinationsFeed ratioConventional polymersLap shear testsAnhydrideBio-based contentCopolyestersOne-stepStructural parametersPolymerizationA Supramolecular Biosensor for Rapid and High-Throughput Quantification of a Disease-Associated Niacin Metabolite
Ueno M, Sugiyama H, Li F, Nishimura T, Arakawa H, Chen X, Cheng X, Takeuchi S, Takeshita Y, Takamura T, Miyagi S, Toyama T, Soga T, Masuo Y, Kato Y, Nakamura H, Tsujiguchi H, Hara A, Tajima A, Noguchi-Shinohara M, Ono K, Kurayoshi K, Kobayashi M, Tadokoro Y, Kasahara A, Shoulkamy M, Maeda K, Ogoshi T, Hirao A. A Supramolecular Biosensor for Rapid and High-Throughput Quantification of a Disease-Associated Niacin Metabolite. Analytical Chemistry 2024, 96: 14499-14507. PMID: 39183562, DOI: 10.1021/acs.analchem.4c02653.Peer-Reviewed Original ResearchHost-guest complexesPhotoinduced electron transferBiological samplesHigh-throughput quantificationSupramolecular hostsElectron transferSulfonate groupsFluorescence quenchingHigh-throughput screeningCarboxyl groupsHuman urineDetection limitMass spectrometryBinding affinityBiosensorNNMT inhibitorsPillar[6]areneDirect additionSupramolecularSulfonateHuman cancer cells in vivoCarboxylQuantificationSpectrometryMetabolitesToward Fully Controllable Monomers Sequence: Binary Organocatalyzed Polymerization from Epoxide/Aziridine/Cyclic Anhydride Monomer Mixture
Gao T, Xia X, Watanabe T, Ke C, Suzuki R, Yamamoto T, Li F, Isono T, Satoh T. Toward Fully Controllable Monomers Sequence: Binary Organocatalyzed Polymerization from Epoxide/Aziridine/Cyclic Anhydride Monomer Mixture. Journal Of The American Chemical Society 2024, 146: 25067-25077. PMID: 39086123, DOI: 10.1021/jacs.4c08009.Peer-Reviewed Original ResearchRing-opening alternating copolymerizationMonomer sequenceDensity functional theory calculationsCopolymerization of epoxidesBinary catalyst systemFunctional theory calculationsBlock-like copolymerLewis acidSequence of monomersCatalyst systemCyclic anhydridesArrangement of monomersOrganocatalyzed polymerizationSynthetic methodTheory calculationsCatalytic reactionsPolymer chainsIntrinsic reactivityPoly(ester-amideBlock copolymersPolymer propertiesPolymer scienceAnhydrideCatalyst ratioMonomer mixtureOrganobase-Catalyzed Ring-Opening Copolymerization of Cyclic Anhydrides and Oxetanes: Establishment and Application in Block Copolymer Synthesis
Ota I, Suzuki R, Mizukami Y, Xia X, Tajima K, Yamamoto T, Li F, Isono T, Satoh T. Organobase-Catalyzed Ring-Opening Copolymerization of Cyclic Anhydrides and Oxetanes: Establishment and Application in Block Copolymer Synthesis. Macromolecules 2024, 57: 3741-3750. DOI: 10.1021/acs.macromol.3c02483.Peer-Reviewed Original ResearchRing-opening copolymerizationCyclic anhydridesTrimethylene oxideCyclic ethersRing-opening copolymerization of phthalic anhydridePhthalic anhydrideRing-opening polymerization of trimethylene carbonatePolymerization of trimethylene carbonatePolymerization processBlock copolymer synthesisRing-opening polymerizationSelf-switchable polymerizationPredictable molecular weightGlass transition temperatureControlled/living natureSynthesized polyestersCopolymer synthesisBlock copolymersOxetaneAnhydridePolymer materialsFunctional groupsL-lactidePolymerizationTransition temperatureAcetyl Cellooligosaccharide-Based Block Copolymers for Toughening Cellulose Triacetate/Poly(ε-caprolactone) Biodegradable Blends
Katsuhara S, Tsuji Y, Sunagawa N, Igarashi K, Takahashi K, Yamamoto T, Li F, Tajima K, Isono T, Satoh T. Acetyl Cellooligosaccharide-Based Block Copolymers for Toughening Cellulose Triacetate/Poly(ε-caprolactone) Biodegradable Blends. ACS Sustainable Chemistry & Engineering 2024, 12: 3025-3033. DOI: 10.1021/acssuschemeng.3c06411.Peer-Reviewed Original ResearchPoly(e-caprolactoneBlock copolymersBlend filmsCellulose triacetateImproved interfacial adhesionTernary blend filmsBinary blend filmsImproved mechanical performanceCellulose acetateCellulose triacetate matrixApplication of cellulose acetateAtomic force microscopyInterfacial adhesionHot pressingMechanical performanceEnvironmentally benign materialsMechanical propertiesSolvent castingBlend partnersForce microscopyBenign materialsTriacetateFilmsCopolymersPotential applicationsChemically Recyclable Unnatural (1→6)-Polysaccharides from Cellulose-Derived Levoglucosenone and Dihydrolevoglucosenone
Mizukami Y, Kakehi Y, Li F, Yamamoto T, Tajima K, Isono T, Satoh T. Chemically Recyclable Unnatural (1→6)-Polysaccharides from Cellulose-Derived Levoglucosenone and Dihydrolevoglucosenone. ACS Macro Letters 2024, 13: 252-259. PMID: 38334272, DOI: 10.1021/acsmacrolett.3c00720.Peer-Reviewed Original ResearchClosed-loop chemical recyclingTransparent self-standing filmsCationic ring-opening polymerizationRing-opening polymerizationSelf-standing filmsUnnatural polysaccharidesSubstituent patternChemical spaceAcid catalystMonomer synthesisSynthetic complexesChemical synthesisPolymer materialsLevoglucosenoneThermal stabilityPolymerization kineticsChemical recyclingAmbient conditionsCellulose-derivativesAmorphous solidsDihydrolevoglucosenonePolymerizationMonomerPolymerMaterial propertiesSynthesis of amino-functionalized polyester via ring-opening alternating copolymerization of glycidylamines with cyclic anhydrides
Suzuki R, Gao T, Sumi A, Yamamoto T, Tajima K, Li F, Isono T, Satoh T. Synthesis of amino-functionalized polyester via ring-opening alternating copolymerization of glycidylamines with cyclic anhydrides. Polymer Chemistry 2024, 15: 3349-3358. DOI: 10.1039/d4py00715h.Peer-Reviewed Original ResearchRing-opening alternating copolymerizationCyclic anhydridesPhthalic anhydridePolymeric materialsAlkali metal carboxylatesChain extension studiesChain-growth polymerizationFunctional end groupsSide chain structurePhosphazene baseControlled/living natureMonomer scopeMetal carboxylatesEnd groupsBlock copolyestersAnhydrideSynthetic pathwayStructural diversityPolymerizationMonomerMolecular weightAntibacterial materialsPolyesterSynthesisAlcohol initiation
2022
Size Control and Enhanced Stability of Silver Nanoparticles by Cyclic Poly(ethylene glycol)
Wang Y, Quinsaat J, Li F, Isono T, Tajima K, Satoh T, Sato S, Yamamoto T. Size Control and Enhanced Stability of Silver Nanoparticles by Cyclic Poly(ethylene glycol). Polymers 2022, 14: 4535. PMID: 36365529, PMCID: PMC9657728, DOI: 10.3390/polym14214535.Peer-Reviewed Original ResearchMeO-PEGUV-vis absorption intensityPoly(ethylene glycolHO-PEG-OHCyclic poly(ethylene glycolMeO-PEG-OMeMethoxy chainUV–visSize controlSilver nanoparticlesStabilization of silver nanoparticlesAbsorption intensityAqueous NaCl solutionMolar ratioEnhanced stabilityNanoparticlesMolecular weightParticle sizeNaCl solutionGlycolCyclizationChain