2021
Microinjection of Xenopus tropicalis Embryos.
Lane M, Mis EK, Khokha MK. Microinjection of Xenopus tropicalis Embryos. Cold Spring Harbor Protocols 2021, 2022: pdb.prot107644. PMID: 34244348, DOI: 10.1101/pdb.prot107644.Peer-Reviewed Original ResearchConceptsEmbryo sizeLarger embryo sizeTargeted gene manipulationEmbryo development timeSmall embryo sizeXenopus tropicalis embryosDevelopmental biologyEarly embryosMicroinjection protocolGene manipulationGenetic studiesFirst divisionXenopusEmbryosImportant modelDevelopment timeMicroinjectionMorpholinoCRISPRBiologySpeciesDNAMRNAOocytesFertilizationObtaining Xenopus tropicalis Eggs.
Lane M, Mis EK, Khokha MK. Obtaining Xenopus tropicalis Eggs. Cold Spring Harbor Protocols 2021, 2022: pdb.prot106344. PMID: 34031209, DOI: 10.1101/pdb.prot106344.Peer-Reviewed Original ResearchConceptsDevelopmental biologyGene manipulation toolsPowerful model systemCell biological studiesCell-free systemTetraploid genomeDiploid genomeThousands of eggsEgg extractsGenetic studiesXenopusGenomePremier systemModel systemEggsBiological studiesBiologyEmbryosFrogsManipulation toolsTiming of stepsSpeciesHormoneFemalesCells
2020
DLG5 variants are associated with multiple congenital anomalies including ciliopathy phenotypes
Marquez J, Mann N, Arana K, Deniz E, Ji W, Konstantino M, Mis EK, Deshpande C, Jeffries L, McGlynn J, Hugo H, Widmeier E, Konrad M, Tasic V, Morotti R, Baptista J, Ellard S, Lakhani SA, Hildebrandt F, Khokha MK. DLG5 variants are associated with multiple congenital anomalies including ciliopathy phenotypes. Journal Of Medical Genetics 2020, 58: 453-464. PMID: 32631816, PMCID: PMC7785698, DOI: 10.1136/jmedgenet-2019-106805.Peer-Reviewed Original ResearchConceptsLoss of ciliaPatient tissuesPatient variantsCongenital heart diseaseMultiple organ systemsMultiple congenital anomaliesDLG5 variantsVariety of pathologiesNephrotic syndromeHeart diseaseCongenital anomaliesRespiratory tractKidney tissueOrgan systemsCystic kidneysPatient phenotypesKidneyDiseaseLimb abnormalitiesUnrelated familiesRescue experimentsCraniofacial malformationsCilia dysfunctionTissue-specific manifestationsTissueNovel truncating mutations in CTNND1 cause a dominant craniofacial and cardiac syndrome
Alharatani R, Ververi A, Beleza-Meireles A, Ji W, Mis E, Patterson QT, Griffin JN, Bhujel N, Chang CA, Dixit A, Konstantino M, Healy C, Hannan S, Neo N, Cash A, Li D, Bhoj E, Zackai EH, Cleaver R, Baralle D, McEntagart M, Newbury-Ecob R, Scott R, Hurst JA, Au PYB, Hosey MT, Khokha M, Marciano DK, Lakhani SA, Liu KJ. Novel truncating mutations in CTNND1 cause a dominant craniofacial and cardiac syndrome. Human Molecular Genetics 2020, 29: 1900-1921. PMID: 32196547, PMCID: PMC7372553, DOI: 10.1093/hmg/ddaa050.Peer-Reviewed Original ResearchConceptsCell-cell junctionsNovel protein-truncating variantsP120-catenin proteinProtein-truncating variantsNext-generation sequencingTranscriptional signalingP120-cateninCRISPR/Epithelial-mesenchymal transitionSubset of phenotypesDevelopmental roleLimb dysmorphologiesAdditional phenotypesHuman diseasesCTNND1Conditional deletionDe novoTruncating mutationsBlepharocheilodontic syndromeEpithelial integrityNovel truncating mutationCraniofacial dysmorphismPhenotypeCleft palateNeurodevelopmental disordersDisrupted ER membrane protein complex-mediated topogenesis drives congenital neural crest defects
Marquez J, Criscione J, Charney RM, Prasad MS, Hwang WY, Mis EK, García-Castro MI, Khokha MK. Disrupted ER membrane protein complex-mediated topogenesis drives congenital neural crest defects. Journal Of Clinical Investigation 2020, 130: 813-826. PMID: 31904590, PMCID: PMC6994125, DOI: 10.1172/jci129308.Peer-Reviewed Original ResearchConceptsEndoplasmic reticulum (ER) membrane protein complexMultipass membrane proteinsNeural crest cellsMembrane proteinsHuman NCC developmentER membrane proteinsMembrane protein complexesCell-cell signalsMyriad of functionsNCC defectsNCC developmentProtein complexesUnbiased proteomicsXenopus modelTransmembrane proteinFunction allelesPatient phenotypesCrest cellsMolecular connectionNeural crestMolecular mechanismsBirth defectsPatient variantsEMC1Β-catenin
2018
RPSA, a candidate gene for isolated congenital asplenia, is required for pre-rRNA processing and spleen formation in Xenopus
Griffin JN, Sondalle SB, Robson A, Mis EK, Griffin G, Kulkarni SS, Deniz E, Baserga SJ, Khokha MK. RPSA, a candidate gene for isolated congenital asplenia, is required for pre-rRNA processing and spleen formation in Xenopus. Development 2018, 145: dev166181. PMID: 30337486, PMCID: PMC6215398, DOI: 10.1242/dev.166181.Peer-Reviewed Original ResearchConceptsPre-rRNA processingSmall ribosomal subunitCommon disease-associated mutationDisease-associated mutationsRpsA mRNARibosome biogenesisRibosome productionRibosome functionRibosomal subunitCandidate genesHuman mRNAsProtein componentsImpairs expressionSpleen developmentMolecular patterningRPSASpleen anlageMutationsXenopusGenesFirst animal modelUniversal requirementMRNACRISPR/Cas9 F0 Screening of Congenital Heart Disease Genes in Xenopus tropicalis
Deniz E, Mis EK, Lane M, Khokha MK. CRISPR/Cas9 F0 Screening of Congenital Heart Disease Genes in Xenopus tropicalis. Methods In Molecular Biology 2018, 1865: 163-174. PMID: 30151766, DOI: 10.1007/978-1-4939-8784-9_12.Peer-Reviewed Original ResearchConceptsCardiac developmentCRISPR/Candidate genesHigh-density SNP arrayCRISPR/Cas9 systemGenome editing technologyCongenital heart disease genesNew genomic technologiesHeart disease genesCopy number variationsRapid functional assayXenopus tropicalisCas9 systemGenetic basisDevelopmental systemsEditing technologyGenomic technologiesSequence variationDisease genesDifferent genesGenetic analysisSNP arrayDevelopmental mechanismsMolecular mechanismsWhole-exome sequencing
2017
CRISPR-Cpf1 mediates efficient homology-directed repair and temperature-controlled genome editing
Moreno-Mateos MA, Fernandez JP, Rouet R, Vejnar CE, Lane MA, Mis E, Khokha MK, Doudna JA, Giraldez AJ. CRISPR-Cpf1 mediates efficient homology-directed repair and temperature-controlled genome editing. Nature Communications 2017, 8: 2024. PMID: 29222508, PMCID: PMC5722943, DOI: 10.1038/s41467-017-01836-2.Peer-Reviewed Original ResearchConceptsHomology-directed repairCpf1 activityGenome editingDifferent eukaryotic systemsGenome engineering toolsEfficient homology-directed repairPost-translational modulationEctothermic organismsEctothermic speciesEukaryotic systemsDNA endonucleaseCRISPR-Cpf1Efficient mutagenesisGenomic DNADNA integrationMolecular understandingTemporal controlZebrafishAsCpf1Cpf1LbCpf1EditingNovel classGenomeMutagenesisVisualization and quantification of injury to the ciliated epithelium using quantitative flow imaging and speckle variance optical coherence tomography
Gamm UA, Huang BK, Mis EK, Khokha MK, Choma MA. Visualization and quantification of injury to the ciliated epithelium using quantitative flow imaging and speckle variance optical coherence tomography. Scientific Reports 2017, 7: 15115. PMID: 29118359, PMCID: PMC5678121, DOI: 10.1038/s41598-017-14670-9.Peer-Reviewed Original ResearchConceptsOptical coherence tomographyCiliated epitheliumCoherence tomographyType of injuryExtent of injuryQuantification of injuryVariance optical coherence tomographyRespiratory infectionsDiffuse injuryFocal injuryImportant defense mechanismMouse tracheaInjuryMucociliary flowEpitheliumRegeneration of ciliaTomographyMultiple factorsDefense mechanismsQuantitative flowLungInfectionTracheaDisease
2015
CRISPRscan: designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo
Moreno-Mateos MA, Vejnar CE, Beaudoin JD, Fernandez JP, Mis EK, Khokha MK, Giraldez AJ. CRISPRscan: designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo. Nature Methods 2015, 12: 982-988. PMID: 26322839, PMCID: PMC4589495, DOI: 10.1038/nmeth.3543.Peer-Reviewed Original Research