2024
Glutathione synthesis in the mouse liver supports lipid abundance through NRF2 repression
Asantewaa G, Tuttle E, Ward N, Kang Y, Kim Y, Kavanagh M, Girnius N, Chen Y, Rodriguez K, Hecht F, Zocchi M, Smorodintsev-Schiller L, Scales T, Taylor K, Alimohammadi F, Duncan R, Sechrist Z, Agostini-Vulaj D, Schafer X, Chang H, Smith Z, O’Connor T, Whelan S, Selfors L, Crowdis J, Gray G, Bronson R, Brenner D, Rufini A, Dirksen R, Hezel A, Huber A, Munger J, Cravatt B, Vasiliou V, Cole C, DeNicola G, Harris I. Glutathione synthesis in the mouse liver supports lipid abundance through NRF2 repression. Nature Communications 2024, 15: 6152. PMID: 39034312, PMCID: PMC11271484, DOI: 10.1038/s41467-024-50454-2.Peer-Reviewed Original ResearchConceptsGlutamate-cysteine ligase catalytic subunitLipid abundanceLipogenic enzyme expressionAbundance in vivoLipid productionCatalytic subunitRepress Nrf2Transcription factorsNrf2 repressionAdult tissuesSynthesis of GSHEnzyme expressionNon-redundantRedox bufferMouse liverLoss of GSHTriglyceride productionIn vivo modelsAbundanceGlutathione synthesisLiver balanceFat storesOxidative stressLipidDeletion
2022
Glutathione-dependent redox balance characterizes the distinct metabolic properties of follicular and marginal zone B cells
Franchina DG, Kurniawan H, Grusdat M, Binsfeld C, Guerra L, Bonetti L, Soriano-Baguet L, Ewen A, Kobayashi T, Farinelle S, Minafra AR, Vandamme N, Carpentier A, Borgmann FK, Jäger C, Chen Y, Kleinewietfeld M, Vasiliou V, Mittelbronn M, Hiller K, Lang PA, Brenner D. Glutathione-dependent redox balance characterizes the distinct metabolic properties of follicular and marginal zone B cells. Nature Communications 2022, 13: 1789. PMID: 35379825, PMCID: PMC8980022, DOI: 10.1038/s41467-022-29426-x.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsB-LymphocytesGlutamate-Cysteine LigaseGlutathioneLymphoid TissueMiceOxidation-ReductionConceptsElectron transport chainMarginal zone B cellsMitochondrial electron transport chainGlutamate-cysteine ligaseCatalytic subunitRedox controlCell-specific ablationRedox balanceTransport chainMetabolic dependenciesCysteine ligaseProtein synthesisMetabolite succinateMTOR activationGlutathione synthesisATP levelsMetabolic propertiesB cellsMetabolic principlesMetabolic featuresDistinct metabolic propertiesMZBCellsActivationLigase
2021
Oxidative stress and genotoxicity in 1,4-dioxane liver toxicity as evidenced in a mouse model of glutathione deficiency
Chen Y, Wang Y, Charkoftaki G, Orlicky DJ, Davidson E, Wan F, Ginsberg G, Thompson DC, Vasiliou V. Oxidative stress and genotoxicity in 1,4-dioxane liver toxicity as evidenced in a mouse model of glutathione deficiency. The Science Of The Total Environment 2021, 806: 150703. PMID: 34600989, PMCID: PMC8633123, DOI: 10.1016/j.scitotenv.2021.150703.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsDioxanesDNA DamageFollow-Up StudiesGlutathioneLiverMiceMice, KnockoutOxidative StressConceptsOxidative stressLiver cytotoxicityGlutamate-cysteine ligase modifier subunitWild-type micePrimary target organRecent mouse studiesCYP2E1 inductionLiver toxicitySubchronic exposureNrf2 inductionOxidative DNA damageCancer riskMouse modelAnti-oxidative responseDNA damageTarget organsAnimal studiesLiver carcinogenicityRedox dysregulationEarly changesHealth CanadaNull miceMouse studiesNuclear factorCarcinogenic mechanismsImpaired GSH biosynthesis disrupts eye development, lens morphogenesis and PAX6 function
Thompson B, Chen Y, Davidson EA, Garcia-Milian R, Golla JP, Apostolopoulos N, Orlicky DJ, Schey K, Thompson DC, Vasiliou V. Impaired GSH biosynthesis disrupts eye development, lens morphogenesis and PAX6 function. The Ocular Surface 2021, 22: 190-203. PMID: 34425299, PMCID: PMC8560581, DOI: 10.1016/j.jtos.2021.08.010.Peer-Reviewed Original ResearchConceptsHEK293T cellsEye developmentGSH biosynthesisTransactivation activityPax6 functionReactive oxygen speciesSubsequent gene ontologyCell identity genesButhionine sulfoximineEpithelial cell identityRNA-seq analysisIngenuity Pathway AnalysisKey upstream regulatorIdentity genesCell identityGene OntologyRNA-seqImmune response genesBioinformatics analysisResponse genesGlutathione biosynthesisLens morphogenesisMolecular consequencesUpstream regulatorMicrophthalmia phenotype
2020
Glutathione Restricts Serine Metabolism to Preserve Regulatory T Cell Function
Kurniawan H, Franchina DG, Guerra L, Bonetti L, -Baguet LS, Grusdat M, Schlicker L, Hunewald O, Dostert C, Merz MP, Binsfeld C, Duncan GS, Farinelle S, Nonnenmacher Y, Haight J, Das Gupta D, Ewen A, Taskesen R, Halder R, Chen Y, Jäger C, Ollert M, Wilmes P, Vasiliou V, Harris IS, Knobbe-Thomsen CB, Turner JD, Mak TW, Lohoff M, Meiser J, Hiller K, Brenner D. Glutathione Restricts Serine Metabolism to Preserve Regulatory T Cell Function. Cell Metabolism 2020, 31: 920-936.e7. PMID: 32213345, PMCID: PMC7265172, DOI: 10.1016/j.cmet.2020.03.004.Peer-Reviewed Original ResearchConceptsSuppressive capacityRegulatory T cell functionTreg suppressive capacityTreg-specific ablationAnti-tumor responseT cell functionSerine metabolismTreg functionalityFoxp3 expressionPrevent autoimmunitySevere autoimmunityTreg differentiationImmune homeostasisEffector TGlutamate-cysteine ligaseCell responsesTregsMTOR activationMutant miceCell functionAutoimmunitySerine availabilityGlutathione synthesisCysteine ligaseMice
2019
Glutathione deficiency-elicited reprogramming of hepatic metabolism protects against alcohol-induced steatosis
Chen Y, Manna SK, Golla S, Krausz KW, Cai Y, Garcia-Milian R, Chakraborty T, Chakraborty J, Chatterjee R, Thompson DC, Gonzalez FJ, Vasiliou V. Glutathione deficiency-elicited reprogramming of hepatic metabolism protects against alcohol-induced steatosis. Free Radical Biology And Medicine 2019, 143: 127-139. PMID: 31351176, PMCID: PMC6848780, DOI: 10.1016/j.freeradbiomed.2019.07.025.Peer-Reviewed Original ResearchMeSH KeywordsAcetyl Coenzyme AAlcohol DrinkingAMP-Activated Protein KinasesAnimalsEthanolFatty AcidsFatty LiverGlucuronic AcidGlutamate-Cysteine LigaseGlutamatesGlutathioneHomeostasisLipogenesisLiverMaleMiceMice, Inbred C57BLMice, KnockoutOligonucleotide Array Sequence AnalysisOxidation-ReductionOxidative StressPentose Phosphate PathwayProtective AgentsTranscription, GeneticConceptsGlutamate-cysteine ligase modifier subunit geneProtein kinase pathwayAcetyl-CoA fluxMultiple cellular pathwaysAlcohol-induced steatosisCellular stressNucleotide biosynthesisLiver microarray analysisGlobal profilingSubunit geneCellular pathwaysMetabolic reprogrammingKinase pathwayMicroarray analysisMolecular mechanismsGSH poolCellular responsesMetabolic pathwaysLower GSHMolecular pathwaysMetabolic homeostasisAmino acidsDepletion of glutathioneCritical pathogenic eventGlucuronate pathwayHepatic metabolic adaptation in a murine model of glutathione deficiency
Chen Y, Golla S, Garcia-Milian R, Thompson DC, Gonzalez FJ, Vasiliou V. Hepatic metabolic adaptation in a murine model of glutathione deficiency. Chemico-Biological Interactions 2019, 303: 1-6. PMID: 30794799, PMCID: PMC6743730, DOI: 10.1016/j.cbi.2019.02.015.Peer-Reviewed Original ResearchConceptsCellular non-protein thiolsMetabolic adaptationGlutamate-cysteine ligase modifier subunitNon-protein thiolsHepatic metabolic adaptationCellular redoxGlobal profilingGSH homeostasisModifier subunitLiver developmentBiochemical mechanismsMetabolic homeostasisAmino acidsGclm null miceDefense mechanismsEnvironmental insultsOxidative damageFatty liver developmentNull miceSpectrum of changesNucleic acidsMetabolic signaturesPivotal roleHomeostasisGlutathione deficiency
2018
Glutathione and Transsulfuration in Alcohol-Associated Tissue Injury and Carcinogenesis
Chen Y, Han M, Matsumoto A, Wang Y, Thompson DC, Vasiliou V. Glutathione and Transsulfuration in Alcohol-Associated Tissue Injury and Carcinogenesis. Advances In Experimental Medicine And Biology 2018, 1032: 37-53. PMID: 30362089, PMCID: PMC6743726, DOI: 10.1007/978-3-319-98788-0_3.ChaptersConceptsGSH biosynthesisAbundant non-protein thiolEpigenetic gene regulationNon-protein thiolsGlutathione S-transferase (GST) familyGene regulationPeroxidase familyExogenous electrophilesCellular methylationReactive oxygen speciesGSH functionsCellular concentrationRelated enzymesTranssulfuration pathwayCancer developmentOxygen speciesBiosynthesisExogenous chemicalsEnzymeTransmethylation pathwayEnhanced susceptibilityPathological conditionsIntimate involvementMillimolar rangePathwayGlutathione de novo synthesis but not recycling process coordinates with glutamine catabolism to control redox homeostasis and directs murine T cell differentiation
Lian G, Gnanaprakasam JR, Wang T, Wu R, Chen X, Liu L, Shen Y, Yang M, Yang J, Chen Y, Vasiliou V, Cassel TA, Green DR, Liu Y, Fan TW, Wang R. Glutathione de novo synthesis but not recycling process coordinates with glutamine catabolism to control redox homeostasis and directs murine T cell differentiation. ELife 2018, 7: e36158. PMID: 30198844, PMCID: PMC6152796, DOI: 10.7554/elife.36158.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell DifferentiationCell ProliferationDimethyl FumarateGlutamate-Cysteine LigaseGlutamineGlutathioneGlutathione DisulfideHomeostasisLymphocyte ActivationMice, Inbred C57BLOxidation-ReductionOxidative StressReactive Oxygen SpeciesReceptors, Antigen, T-CellT-LymphocytesT-Lymphocytes, RegulatoryTh17 CellsConceptsCell fateDe novo synthesisNovo synthesisCell differentiationT cell differentiationMurine T cell differentiationT cell fateGlutamate-cysteine ligaseLineage choiceRedox demandsGlutathione de novo synthesisRecycling pathwayInhibition of GSHRedox homeostasisGSH biosynthesisGlutamine catabolismRedox balanceModifier subunitEssential precursorIntracellular GSHEssential roleGlutathione disulfideDifferentiationGSH contentGSH
2017
Glutathione Primes T Cell Metabolism for Inflammation
Mak TW, Grusdat M, Duncan GS, Dostert C, Nonnenmacher Y, Cox M, Binsfeld C, Hao Z, Brüstle A, Itsumi M, Jäger C, Chen Y, Pinkenburg O, Camara B, Ollert M, Bindslev-Jensen C, Vasiliou V, Gorrini C, Lang PA, Lohoff M, Harris IS, Hiller K, Brenner D. Glutathione Primes T Cell Metabolism for Inflammation. Immunity 2017, 46: 675-689. PMID: 28423341, DOI: 10.1016/j.immuni.2017.03.019.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsEncephalomyelitis, Autoimmune, ExperimentalEnergy MetabolismGlutamate-Cysteine LigaseGlutamineGlutathioneGlycolysisImmunoblottingInflammationMice, Inbred C57BLMice, KnockoutNFATC Transcription FactorsProto-Oncogene Proteins c-mycReactive Oxygen SpeciesSignal TransductionT-LymphocytesTOR Serine-Threonine KinasesConceptsReactive oxygen speciesMYC transcription factorsConditional gene targetingT cell-specific ablationGlutamate-cysteine ligaseT cell metabolismRapamycin 1Catalytic subunitMetabolic integrationTranscription factorsGene targetingMetabolic reprogrammingBiosynthetic requirementsUnexpected roleExpression of NFATAntiviral defenseCysteine ligaseCell metabolismGSH pathwayMammalian targetGSH productionMurine TGSH deficiencyOxygen speciesCell effector functions
2016
Chronic Glutathione Depletion Confers Protection against Alcohol-induced Steatosis: Implication for Redox Activation of AMP-activated Protein Kinase Pathway
Chen Y, Singh S, Matsumoto A, Manna SK, Abdelmegeed MA, Golla S, Murphy RC, Dong H, Song BJ, Gonzalez FJ, Thompson DC, Vasiliou V. Chronic Glutathione Depletion Confers Protection against Alcohol-induced Steatosis: Implication for Redox Activation of AMP-activated Protein Kinase Pathway. Scientific Reports 2016, 6: 29743. PMID: 27403993, PMCID: PMC4940737, DOI: 10.1038/srep29743.Peer-Reviewed Original ResearchConceptsAlcoholic liver diseaseGclm KO miceLiver steatosisKO miceAlcohol-induced liver steatosisFactor 2 (Nrf2) target genesEthanol-containing liquid dietOxidative stressGclm knockout mouseAlcohol-induced steatosisHepatic lipid profilesProtein kinase pathwayNew therapeutic strategiesNormal hepatic levelsLevels of glutathioneFatty acid oxidationKinase pathwayLiver diseaseLipid profileLiquid dietEthanol clearanceHepatic levelsTherapeutic strategiesKnockout miceSteatosis
2014
Transgenic Mouse Models for Alcohol Metabolism, Toxicity, and Cancer
Heit C, Dong H, Chen Y, Shah YM, Thompson DC, Vasiliou V. Transgenic Mouse Models for Alcohol Metabolism, Toxicity, and Cancer. Advances In Experimental Medicine And Biology 2014, 815: 375-387. PMID: 25427919, PMCID: PMC4323349, DOI: 10.1007/978-3-319-09614-8_22.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsReactive oxygen speciesAldehyde dehydrogenasesCritical biological functionsAlcohol dehydrogenaseFormation of proteinHuman genesBiological functionsMolecular mechanismsVariety of cancersPrimary enzymeGenetic defectsOxygen speciesEnzymeNitrogen speciesEthanol metabolismTransgenic mouse modelOxidative stressSpeciesCytochrome P450Pathogenic eventsMetabolismGenetic polymorphismsAntioxidant mechanismsAlcohol-induced toxicityAlcohol-metabolizing enzymes
2013
Glutathione defense mechanism in liver injury: Insights from animal models
Chen Y, Dong H, Thompson DC, Shertzer HG, Nebert DW, Vasiliou V. Glutathione defense mechanism in liver injury: Insights from animal models. Food And Chemical Toxicology 2013, 60: 38-44. PMID: 23856494, PMCID: PMC3801188, DOI: 10.1016/j.fct.2013.07.008.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsLiver injuryGlutamate-cysteine ligaseMouse modelLiver disease processTransgenic mouse modelCellular GSH concentrationGSH homeostasisLiver diseaseClinical stageHepatic insultLiver pathologyDisease processRate-limiting enzymeAnimal modelsHepatic GSHHepatic responseModifier subunitGenetic deficiencyInjuryPathophysiological functionsGSH deficitThiol antioxidantGSH concentrationMiceRole of GSH
2012
Effect of chronic glutathione deficiency on the behavioral phenotype of Gclm(−/−) knockout mice
Chen Y, Curran CP, Nebert DW, Patel KV, Williams MT, Vorhees CV. Effect of chronic glutathione deficiency on the behavioral phenotype of Gclm(−/−) knockout mice. Neurotoxicology And Teratology 2012, 34: 450-457. PMID: 22580179, PMCID: PMC3404268, DOI: 10.1016/j.ntt.2012.04.009.Peer-Reviewed Original ResearchConceptsGlutamate-cysteine ligase modifier subunitMorris water mazeKO miceKnockout miceWater mazeOxidative stressChronic glutathione deficiencyPostnatal day 60Novel object recognitionWild-type littermatesTime of conceptionChronic GSH depletionChronic oxidative stressOpen-field activityKnockout mouse lineNormal spatial learningControl brain regionsAcoustic startleBehavioral abnormalitiesPostnatal lifeBrain regionsNeurodegenerative disordersDay 60Phenotyping testsMice
2011
Glutathione-Deficient Mice Are Susceptible to TCDD-Induced Hepatocellular Toxicity but Resistant to Steatosis
Chen Y, Krishan M, Nebert DW, Shertzer HG. Glutathione-Deficient Mice Are Susceptible to TCDD-Induced Hepatocellular Toxicity but Resistant to Steatosis. Chemical Research In Toxicology 2011, 25: 94-100. PMID: 22082335, DOI: 10.1021/tx200242a.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAspartate AminotransferasesEnvironmental PollutantsFatty LiverFemaleGamma-GlutamyltransferaseGene Expression RegulationGlutamate-Cysteine LigaseGlutathioneLipid MetabolismLiverMiceMice, Inbred C57BLMice, KnockoutNon-alcoholic Fatty Liver DiseaseOligonucleotide Array Sequence AnalysisPolychlorinated DibenzodioxinsReverse Transcriptase Polymerase Chain ReactionConceptsTetrachlorodibenzo-p-dioxinGlutamic oxaloacetic transaminaseGlutamate-cysteine ligaseHepatocellular toxicityPlasma glutamic oxaloacetic transaminaseWild-type female miceImpaired lipid metabolismTissue GSH levelsTCDD-induced hepatotoxicityGlutathione-deficient miceΓ-glutamyl transferaseHepatocellular injuryWT miceHepatocellular damageLipid metabolism genesFemale miceWT littermatesTransgenic miceCDNA microarray expression analysisDe novo GSH biosynthesisOxaloacetic transaminaseLipid metabolismConsecutive daysSteatosisMiceLipid metabolism and body composition in Gclm(−/−) mice
Kendig EL, Chen Y, Krishan M, Johansson E, Schneider SN, Genter MB, Nebert DW, Shertzer HG. Lipid metabolism and body composition in Gclm(−/−) mice. Toxicology And Applied Pharmacology 2011, 257: 338-348. PMID: 21967773, PMCID: PMC3226854, DOI: 10.1016/j.taap.2011.09.017.Peer-Reviewed Original ResearchConceptsHigh-fat dietExcessive weight gainInsulin resistanceWeight gainFatty liverBasal metabolic rateGlutamate-cysteine ligase modifier subunit geneDecreased respiratory quotientExcess body weightIntestinal lipid absorptionHepatic oxidative stress responseDietary energy consumptionWild-type controlsGlucose intoleranceOxidative stress responseFat dietNormal dietRisk factorsBody compositionBody weightMetabolic rateDietary lipidsLipid absorptionMetabolic diseasesExperimental animals
2010
Oral N-acetylcysteine rescues lethality of hepatocyte-specific Gclc-knockout mice, providing a model for hepatic cirrhosis
Chen Y, Johansson E, Yang Y, Miller ML, Shen D, Orlicky DJ, Shertzer HG, Vasiliou V, Nebert DW, Dalton TP. Oral N-acetylcysteine rescues lethality of hepatocyte-specific Gclc-knockout mice, providing a model for hepatic cirrhosis. Journal Of Hepatology 2010, 53: 1085-1094. PMID: 20810184, PMCID: PMC2970663, DOI: 10.1016/j.jhep.2010.05.028.Peer-Reviewed Original ResearchAcetylcysteineAdministration, OralAnimalsAntioxidantsBase SequenceCytokinesDisease Models, AnimalDNA PrimersGene Expression ProfilingGlutamate-Cysteine LigaseGlutathioneHepatocytesLiverLiver CirrhosisMiceMice, KnockoutMicroscopy, Electron, TransmissionMitochondria, LiverOxidative StressRNA, MessengerGlutathione deficient C57BL/6J mice are not sensitized to ozone-induced lung injury
Johansson E, Wesselkamper SC, Shertzer HG, Leikauf GD, Dalton TP, Chen Y. Glutathione deficient C57BL/6J mice are not sensitized to ozone-induced lung injury. Biochemical And Biophysical Research Communications 2010, 396: 407-412. PMID: 20417186, PMCID: PMC2892220, DOI: 10.1016/j.bbrc.2010.04.105.Peer-Reviewed Original ResearchConceptsOzone-induced lung injuryGlutamate-cysteine ligase modifier subunitLung injuryLung hyperpermeabilityDegree of neutrophiliaBronchoalveolar lavage fluidWild-type miceInflammatory gene expressionPulmonary susceptibilityLavage fluidCompensatory augmentationKnockout miceTotal protein concentrationPpm ozoneMiceModifier subunitMRNA levelsAntioxidant defenseMember 2Antioxidant glutathioneMetallothionein-1GSH depletionHyperpermeabilityInjuryAntioxidant responseRedox Dysregulation Affects the Ventral But Not Dorsal Hippocampus: Impairment of Parvalbumin Neurons, Gamma Oscillations, and Related Behaviors
Steullet P, Cabungcal JH, Kulak A, Kraftsik R, Chen Y, Dalton TP, Cuenod M, Q. K. Redox Dysregulation Affects the Ventral But Not Dorsal Hippocampus: Impairment of Parvalbumin Neurons, Gamma Oscillations, and Related Behaviors. Journal Of Neuroscience 2010, 30: 2547-2558. PMID: 20164340, PMCID: PMC6634545, DOI: 10.1523/jneurosci.3857-09.2010.Peer-Reviewed Original Research8-Hydroxy-2'-DeoxyguanosineAdaptation, OcularAnalysis of VarianceAnimalsAnimals, NewbornBehavior, AnimalBiological ClocksCalbindin 2CalbindinsConditioning, ClassicalDeoxyguanosineElectric StimulationElectroencephalographyExcitatory Amino Acid AgonistsExploratory BehaviorFearFeeding BehaviorGene Expression RegulationGene Expression Regulation, DevelopmentalGlutamate-Cysteine LigaseGlutathioneHippocampusInterneuronsKainic AcidMaleMaze LearningMiceMice, Inbred C57BLMice, KnockoutNeural PathwaysOxidation-ReductionOxidative StressParvalbuminsPattern Recognition, VisualRewardS100 Calcium Binding Protein GSpatial Behavior
2009
Early onset senescence occurs when fibroblasts lack the glutamate–cysteine ligase modifier subunit
Chen Y, Johansson E, Fan Y, Shertzer HG, Vasiliou V, Nebert DW, Dalton TP. Early onset senescence occurs when fibroblasts lack the glutamate–cysteine ligase modifier subunit. Free Radical Biology And Medicine 2009, 47: 410-418. PMID: 19427898, PMCID: PMC2773044, DOI: 10.1016/j.freeradbiomed.2009.05.003.Peer-Reviewed Original ResearchMeSH KeywordsAcetylcysteineAnimalsBeta-GalactosidaseCell Culture TechniquesCell CycleCell Growth ProcessesCellular SenescenceCyclin-Dependent Kinase Inhibitor p21DNA DamageFemaleFetusFibroblastsFree Radical ScavengersGlutamate-Cysteine LigaseGlutathioneMiceMice, Inbred C57BLMice, KnockoutPregnancyProtein SubunitsReactive Oxygen SpeciesTumor Suppressor Protein p53ConceptsGlutamate-cysteine ligasePremature senescenceCellular redox environmentCellular antioxidant glutathionePrimary murine fibroblastsSenescence-associated beta-galactosidase activityCell cycle arrestInduction of p53Beta-galactosidase activityPrevents premature senescenceCatalytic subunitCellular senescenceGrowth arrestGlutamate cysteine ligase modifierModifier subunitP21 proteinPhysiological roleSenescenceDNA damageRedox environmentCycle arrestMurine fibroblastsGSH synthesisN-acetylcysteine increasesPrimary cells