CUTS: A Deep Learning and Topological Framework for Multigranular Unsupervised Medical Image Segmentation
Liu C, Amodio M, Shen L, Gao F, Avesta A, Aneja S, Wang J, Del Priore L, Krishnaswamy S. CUTS: A Deep Learning and Topological Framework for Multigranular Unsupervised Medical Image Segmentation. Lecture Notes In Computer Science 2024, 15008: 155-165. DOI: 10.1007/978-3-031-72111-3_15.Peer-Reviewed Original ResearchMedical image segmentationImage segmentationLack of labeled dataUnsupervised deep learning frameworkSegmenting medical imagesDeep learning frameworkBrain MRI imagesRetinal fundus imagesContrastive learningLearning frameworkUnsupervised methodDeep learningExpert annotationsData topologyMedical imagesGranularity levelsEmbedding mapHausdorff distanceFundus imagesDice coefficientImage dataEmbeddingAnnotationLearningMRI imagesBayesian Spectral Graph Denoising with Smoothness Prior
Leone S, Sun X, Perlmutter M, Krishnaswamy S. Bayesian Spectral Graph Denoising with Smoothness Prior. 2024, 00: 1-6. DOI: 10.1109/ciss59072.2024.10480177.Peer-Reviewed Original ResearchPresence of noisy dataGraph signal processingMaximum A PosterioriAffinity graphDenoised featuresGaussian noiseNoisy dataHigh-dimensionalComplex dataAlgorithm's abilityA-posterioriModel of noise generationSmoothness priorsRestored signalDistributed noiseSignal processingAlgorithmImage dataGraphFrequency domainNoiseNoise generationDenoisingWhite noiseSmoothing