2016
Molecular mechanism of activation-triggered subunit exchange in Ca2+/calmodulin-dependent protein kinase II
Bhattacharyya M, Stratton MM, Going CC, McSpadden ED, Huang Y, Susa AC, Elleman A, Cao YM, Pappireddi N, Burkhardt P, Gee CL, Barros T, Schulman H, Williams ER, Kuriyan J. Molecular mechanism of activation-triggered subunit exchange in Ca2+/calmodulin-dependent protein kinase II. ELife 2016, 5: e13405. PMID: 26949248, PMCID: PMC4859805, DOI: 10.7554/elife.13405.Peer-Reviewed Original ResearchConceptsDependent protein kinase IIProtein kinase IICaMKII holoenzymeKinase IIExchange of subunitsKinase domainSubunit exchangeIntersubunit interfaceMolecular mechanismsOligomeric enzymesHoloenzymeHub interfaceCalmodulinCaMKIIThree-way competitionUnactivated onesDimersDodecamericSubunitsOrganismsEnzymeHubMechanismSpiral formActivationProtein Structure and Function: Looking through the Network of Side-Chain Interactions.
Bhattacharyya M, Ghosh S, Vishveshwara S. Protein Structure and Function: Looking through the Network of Side-Chain Interactions. Current Protein And Peptide Science 2016, 17: 4-25. PMID: 26412788, DOI: 10.2174/1389203716666150923105727.Peer-Reviewed Original ResearchConceptsNetwork theoryImportant problemComplex biological problemsProtein structure networksBipartite networksStructure networkEquilibrium structureModel validationDifferent schemesBiological problemsProblemNetwork approachTheoryNetwork metricsGeneral applicationComplex phenomenonGeneral featuresFormalismNetworkLarge numberProtein structureGeometrySpecific featuresBiological dataEnsemble
2013
An automated approach to network features of protein structure ensembles
Bhattacharyya M, Bhat CR, Vishveshwara S. An automated approach to network features of protein structure ensembles. Protein Science 2013, 22: 1399-1416. PMID: 23934896, PMCID: PMC3795498, DOI: 10.1002/pro.2333.Peer-Reviewed Original ResearchMeSH KeywordsBacterial ProteinsComputational BiologyCrystallography, X-RayMethanocaldococcusModels, MolecularMolecular Dynamics SimulationNuclear Magnetic Resonance, BiomolecularProtein ConformationProteinsReceptors, Adrenergic, beta-2RNA, TransferSaccharomyces cerevisiaeSaccharomyces cerevisiae ProteinsSoftwareTyrosine-tRNA LigaseConceptsStructural ensemblesX-ray structureSide-chain interactionsNMR studiesSingle static structureChemical knowledgeMD trajectoriesLong-range allosteric communicationInteraction energyMultiple X-ray structuresDevelopment/applicationGeneral biological communityStructural dataStructure ensemblesProtein structureProgram packageStructureBiological relevanceProtein structure ensemblesAllosteric communicationAmino acidsTRNA complexHereinComplexesEasy access
2012
Interaction Signatures Stabilizing the NAD(P)-Binding Rossmann Fold: A Structure Network Approach
Bhattacharyya M, Upadhyay R, Vishveshwara S. Interaction Signatures Stabilizing the NAD(P)-Binding Rossmann Fold: A Structure Network Approach. PLOS ONE 2012, 7: e51676. PMID: 23284738, PMCID: PMC3524241, DOI: 10.1371/journal.pone.0051676.Peer-Reviewed Original Research
2011
Probing the Allosteric Mechanism in Pyrrolysyl-tRNA Synthetase Using Energy-Weighted Network Formalism
Bhattacharyya M, Vishveshwara S. Probing the Allosteric Mechanism in Pyrrolysyl-tRNA Synthetase Using Energy-Weighted Network Formalism. Biochemistry 2011, 50: 6225-6236. PMID: 21650159, DOI: 10.1021/bi200306u.Peer-Reviewed Original ResearchConceptsPyrrolysyl-tRNA synthetaseDimeric proteinFunctioning of proteinsSequence/structureAllosteric regulationAllosteric communicationAnticodon recognitionTRNA synthetasesImportant residuesAllosteric mechanismKey residuesSubtle rearrangementsProteinKey playersPyrrolysineFunctional aspectsSynthetaseResiduesAtypical enzymeGlobal perturbationsComprehensive viewComplexesStructure networkMolecular dynamics simulationsPylRS
2009
Allostery and conformational free energy changes in human tryptophanyl‐tRNA synthetase from essential dynamics and structure networks
Bhattacharyya M, Ghosh A, Hansia P, Vishveshwara S. Allostery and conformational free energy changes in human tryptophanyl‐tRNA synthetase from essential dynamics and structure networks. Proteins Structure Function And Bioinformatics 2009, 78: 506-517. PMID: 19768679, DOI: 10.1002/prot.22573.Peer-Reviewed Original ResearchConceptsHuman tryptophanyl-tRNA synthetaseTryptophanyl-tRNA synthetaseConcept of allosteryProtein structure networksProtein complexesMultidomain proteinsAllosteric communicationFunctional insightsProtein biosynthesisCognate tRNAAllosteric mechanismAllosteryConformational free energy changesEnzymatic catalysisConformational mobilityFlexible regionsMolecular levelAmino acidsProteinStructure networkMolecular-level understandingFree energy landscapePopulation shiftsMolecular dynamics simulationsFree energy changeFunctional correlation of bacterial LuxS with their quaternary associations: interface analysis of the structure networks
Bhattacharyya M, Vishveshwara S. Functional correlation of bacterial LuxS with their quaternary associations: interface analysis of the structure networks. BMC Molecular And Cell Biology 2009, 9: 8. PMID: 19243584, PMCID: PMC2656534, DOI: 10.1186/1472-6807-9-8.Peer-Reviewed Original ResearchConceptsProtein structure networksSequence alignment studiesQuorum sensing moleculesDesign of inhibitorsHigh structural similarityCertain structural detailsGene homologuesStructure comparison methodsFlagellar motilityLux genesHomodimeric proteinDimer interfaceDimeric interfaceAI-2Protein interfacesVariety of functionsQuaternary associationMetabolic regulationSensing moleculesFunctional roleStructure networkProkaryotesX-ray crystallographyProteinToxin production