2024
Enhancing in vivo cell and tissue targeting by modulation of polymer nanoparticles and macrophage decoys
Piotrowski-Daspit A, Bracaglia L, Eaton D, Richfield O, Binns T, Albert C, Gould J, Mortlock R, Egan M, Pober J, Saltzman W. Enhancing in vivo cell and tissue targeting by modulation of polymer nanoparticles and macrophage decoys. Nature Communications 2024, 15: 4247. PMID: 38762483, PMCID: PMC11102454, DOI: 10.1038/s41467-024-48442-7.Peer-Reviewed Original ResearchConceptsPoly(amine-co-esterPolymer nanoparticlesDelivery of nucleic acid therapeuticsCell-type tropismTissue tropismNucleic acid delivery vehiclesIn vivo deliveryIn vivo efficacyCirculation half-lifeNucleic acid therapeuticsVehicle characteristicsTunable propertiesBiodistribution assessmentPhysiological fatePolymer chemistrySurface propertiesPharmacokinetic modelTissue targetingNanoparticlesDistribution modifiersPolymeric nanoparticlesTropismPolymerDelivery vehiclesHalf-life
2021
Nanoparticles for delivery of agents to fetal lungs
Ullrich SJ, Freedman-Weiss M, Ahle S, Mandl HK, Piotrowski-Daspit AS, Roberts K, Yung N, Maassel N, Bauer-Pisani T, Ricciardi AS, Egan ME, Glazer PM, Saltzman WM, Stitelman DH. Nanoparticles for delivery of agents to fetal lungs. Acta Biomaterialia 2021, 123: 346-353. PMID: 33484911, PMCID: PMC7962939, DOI: 10.1016/j.actbio.2021.01.024.Peer-Reviewed Original ResearchConceptsFetal lungCellular uptakeIntra-amniotic routeRoute of deliveryCongenital lung diseaseDelivery of agentsIntra-amniotic deliveryRelative cellular uptakeNanoparticlesFetal treatmentDiaphragmatic herniaLung diseaseFetal therapyLung tissueFetal miceIntravenous deliveryCystic fibrosisLungLung therapyInterventional technologiesTherapeutic agentsEndothelial cellsCell populationsEffective targetingTherapy
2020
Single-Cell Transcriptional Archetypes of Airway Inflammation in Cystic Fibrosis.
Schupp JC, Khanal S, Gomez JL, Sauler M, Adams TS, Chupp GL, Yan X, Poli S, Zhao Y, Montgomery RR, Rosas IO, Dela Cruz CS, Bruscia EM, Egan ME, Kaminski N, Britto CJ. Single-Cell Transcriptional Archetypes of Airway Inflammation in Cystic Fibrosis. American Journal Of Respiratory And Critical Care Medicine 2020, 202: 1419-1429. PMID: 32603604, PMCID: PMC7667912, DOI: 10.1164/rccm.202004-0991oc.Peer-Reviewed Original ResearchConceptsCF lung diseaseHealthy control subjectsImmune dysfunctionLung diseaseCystic fibrosisControl subjectsSputum cellsAbnormal chloride transportLung mononuclear phagocytesInnate immune dysfunctionDivergent clinical coursesImmune cell repertoireMonocyte-derived macrophagesCF monocytesAirway inflammationClinical courseProinflammatory featuresCell survival programInflammatory responseTissue injuryCell repertoireImmune functionTranscriptional profilesAlveolar macrophagesMononuclear phagocytes
2015
Association between serum 25‐hydroxyvitamin D level and pulmonary exacerbations in cystic fibrosis
Vanstone MB, Egan ME, Zhang JH, Carpenter TO. Association between serum 25‐hydroxyvitamin D level and pulmonary exacerbations in cystic fibrosis. Pediatric Pulmonology 2015, 50: 441-446. PMID: 25657016, DOI: 10.1002/ppul.23161.Peer-Reviewed Original ResearchConceptsPulmonary function testsCystic fibrosisPulmonary exacerbationsPediatric patientsD levelsYale-New Haven HospitalPediatric CF patientsVitamin D sufficiencyRetrospective chart reviewVitamin D statusStrongest independent determinantCF care centersPatients ages 5Logistic regression analysisAnnual numberD sufficiencyD statusChart reviewClinic visitsLung functionPulmonary functionAntibiotic therapyFunction testsHospitalization ratesIndependent determinants
2014
Long-term treatment with oral N-acetylcysteine: Affects lung function but not sputum inflammation in cystic fibrosis subjects. A phase II randomized placebo-controlled trial
Conrad C, Lymp J, Thompson V, Dunn C, Davies Z, Chatfield B, Nichols D, Clancy J, Vender R, Egan M, Quittell L, Michelson P, Antony V, Spahr J, Rubenstein R, Moss R, Herzenberg L, Goss C, Tirouvanziam R. Long-term treatment with oral N-acetylcysteine: Affects lung function but not sputum inflammation in cystic fibrosis subjects. A phase II randomized placebo-controlled trial. Journal Of Cystic Fibrosis 2014, 14: 219-227. PMID: 25228446, DOI: 10.1016/j.jcf.2014.08.008.Peer-Reviewed Original ResearchConceptsOral N-acetylcysteineLung functionN-acetylcysteineHNE activityHuman neutrophil elastase (HNE) activityDouble-blind proofPlacebo-controlled trialNeutrophil elastase activityPotential of NACLong-term treatmentLung function measuresCystic fibrosis subjectsPlacebo recipientsNeutrophilic inflammationPlacebo groupPulmonary hypertensionClinical outcomesNAC groupCF subjectsCF airwaysSystemic glutathioneNAC recipientsFunction measuresElastase activityInflammationModified Poly(lactic‐co‐glycolic Acid) Nanoparticles for Enhanced Cellular Uptake and Gene Editing in the Lung
Fields RJ, Quijano E, McNeer NA, Caputo C, Bahal R, Anandalingam K, Egan ME, Glazer PM, Saltzman WM. Modified Poly(lactic‐co‐glycolic Acid) Nanoparticles for Enhanced Cellular Uptake and Gene Editing in the Lung. Advanced Healthcare Materials 2014, 4: 361-366. PMID: 25156908, PMCID: PMC4339402, DOI: 10.1002/adhm.201400355.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsDNADNA-Binding ProteinsDrug CarriersEpithelial CellsFemaleGene Transfer TechniquesGreen Fluorescent ProteinsLactic AcidLungMacrophages, AlveolarMice, Inbred BALB CMice, TransgenicMolecular Sequence DataNanoparticlesPolyglycolic AcidPolylactic Acid-Polyglycolic Acid CopolymerSurface Properties
2013
Reduced Caveolin-1 Promotes Hyperinflammation due to Abnormal Heme Oxygenase-1 Localization in Lipopolysaccharide-Challenged Macrophages with Dysfunctional Cystic Fibrosis Transmembrane Conductance Regulator
Zhang PX, Murray TS, Villella VR, Ferrari E, Esposito S, D'Souza A, Raia V, Maiuri L, Krause DS, Egan ME, Bruscia EM. Reduced Caveolin-1 Promotes Hyperinflammation due to Abnormal Heme Oxygenase-1 Localization in Lipopolysaccharide-Challenged Macrophages with Dysfunctional Cystic Fibrosis Transmembrane Conductance Regulator. The Journal Of Immunology 2013, 190: 5196-5206. PMID: 23606537, PMCID: PMC3711148, DOI: 10.4049/jimmunol.1201607.Peer-Reviewed Original ResearchMeSH KeywordsAdolescentAdultAnimalsCaveolin 1Cells, CulturedChildChild, PreschoolCystic FibrosisCystic Fibrosis Transmembrane Conductance RegulatorFemaleHeme Oxygenase-1HumansInflammationLipopolysaccharidesLung DiseasesMacrophagesMaleMembrane ProteinsMiceMice, KnockoutNasal PolypsReactive Oxygen SpeciesSignal TransductionToll-Like Receptor 4Young AdultConceptsCav-1 expressionHeme oxygenase-1Dysfunctional cystic fibrosis transmembrane conductance regulatorCystic fibrosis transmembrane conductance regulatorCell surfaceFibrosis transmembrane conductance regulatorProtein caveolin-1Cellular redox statusCell surface localizationCellular oxidative stateTransmembrane conductance regulatorHO-1 enzymePositive feed-forward loopCystic fibrosis macrophagesNegative regulatorCaveolin-1Conductance regulatorCell survivalHO-1 deliverySurface localizationRedox statusMΦ responsesHO-1/CO pathwayPathwayPotential target
2006
Engraftment of Donor‐Derived Epithelial Cells in Multiple Organs Following Bone Marrow Transplantation into Newborn Mice
Bruscia EM, Ziegler EC, Price JE, Weiner S, Egan ME, Krause DS. Engraftment of Donor‐Derived Epithelial Cells in Multiple Organs Following Bone Marrow Transplantation into Newborn Mice. Stem Cells 2006, 24: 2299-2308. PMID: 16794262, DOI: 10.1634/stemcells.2006-0166.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnimals, NewbornBone Marrow TransplantationCystic Fibrosis Transmembrane Conductance RegulatorEpithelial CellsFemaleFluorescent Antibody TechniqueHematopoietic Stem Cell TransplantationIn Situ Hybridization, FluorescenceMaleMiceMice, Inbred C57BLMice, Inbred StrainsMice, TransgenicRNA, MessengerY ChromosomeConceptsBone marrow-derived cellsMarrow-derived epithelial cellsBone marrow transplantationNewborn miceEpithelial cellsMarrow transplantationGI tractBone marrow-derived epithelial cellsDonor-derived epithelial cellsDoses of busulfanMarrow-derived cellsEngraftment of donorIrradiated adult recipientsMyeloablative regimenPreparative regimenAdult recipientsDifferent regimensEngrafted miceHematopoietic engraftmentGastrointestinal tractSurvival advantageTherapeutic benefitAdult miceMultiple organsBone marrow
1998
Chloride channel and chloride conductance regulator domains of CFTR, the cystic fibrosis transmembrane conductance regulator
Schwiebert E, Morales M, Devidas S, Egan M, Guggino W. Chloride channel and chloride conductance regulator domains of CFTR, the cystic fibrosis transmembrane conductance regulator. Proceedings Of The National Academy Of Sciences Of The United States Of America 1998, 95: 2674-2679. PMID: 9482946, PMCID: PMC19458, DOI: 10.1073/pnas.95.5.2674.Peer-Reviewed Original ResearchMeSH Keywords4,4'-Diisothiocyanostilbene-2,2'-Disulfonic AcidAnimalsBase SequenceBronchiCells, CulturedChloride ChannelsChloridesCyclic AMPCystic FibrosisCystic Fibrosis Transmembrane Conductance RegulatorDNA, ComplementaryEpithelial CellsFemaleHumansMembrane PotentialsModels, MolecularMolecular Sequence DataMutagenesis, Site-DirectedOligodeoxyribonucleotidesOocytesPatch-Clamp TechniquesPoint MutationProtein ConformationRecombinant ProteinsSequence DeletionTranscription, GeneticTransfectionXenopus laevisConceptsCl- channel functionConductance regulatorDomains of CFTRCystic fibrosis transmembrane conductance regulatorChloride channelsFibrosis transmembrane conductance regulatorFirst transmembrane domainC-terminal truncationsIndividual amino acid substitutionsTransmembrane conductance regulatorCl- channel poreCl- channelsAmino acid substitutionsRegulator domainTransmembrane domainTwo-electrode voltage-clamp recordingsRegulatory domainMutant CFTRAcid substitutionsRegulator functionHuman airway epithelial cellsCFTRXenopus oocytesRegulatorRelease of ATP
1997
A functional CFTR-NBF1 is required for ROMK2-CFTR interaction
McNicholas C, Nason M, Guggino W, Schwiebert E, Hebert S, Giebisch G, Egan M. A functional CFTR-NBF1 is required for ROMK2-CFTR interaction. American Journal Of Physiology 1997, 273: f843-f848. PMID: 9374850, DOI: 10.1152/ajprenal.1997.273.5.f843.Peer-Reviewed Original ResearchAmino Acid SubstitutionAnimalsBase SequenceBinding SitesCystic Fibrosis Transmembrane Conductance RegulatorFemaleGlyburideMembrane PotentialsModels, MolecularMutagenesis, Site-DirectedOligodeoxyribonucleotidesOocytesPatch-Clamp TechniquesPotassium ChannelsPotassium Channels, Inwardly RectifyingProtein Structure, SecondaryRecombinant ProteinsXenopus laevis
1996
Sensitivity of a renal K+ channel (ROMK2) to the inhibitory sulfonylurea compound glibenclamide is enhanced by coexpression with the ATP-binding cassette transporter cystic fibrosis transmembrane regulator.
McNicholas C, Guggino W, Schwiebert E, Hebert S, Giebisch G, Egan M. Sensitivity of a renal K+ channel (ROMK2) to the inhibitory sulfonylurea compound glibenclamide is enhanced by coexpression with the ATP-binding cassette transporter cystic fibrosis transmembrane regulator. Proceedings Of The National Academy Of Sciences Of The United States Of America 1996, 93: 8083-8088. PMID: 8755607, PMCID: PMC38879, DOI: 10.1073/pnas.93.15.8083.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine TriphosphateAnimalsChloride ChannelsCyclic AMP-Dependent Protein KinasesCystic Fibrosis Transmembrane Conductance RegulatorFemaleGlyburideKidneyMembrane PotentialsOocytesPatch-Clamp TechniquesPhosphorylationPotassium ChannelsPotassium Channels, Inwardly RectifyingSodium ChannelsXenopus laevis