2023
Super-enhancer hijacking drives ectopic expression of hedgehog pathway ligands in meningiomas
Youngblood M, Erson-Omay Z, Li C, Najem H, Coșkun S, Tyrtova E, Montejo J, Miyagishima D, Barak T, Nishimura S, Harmancı A, Clark V, Duran D, Huttner A, Avşar T, Bayri Y, Schramm J, Boetto J, Peyre M, Riche M, Goldbrunner R, Amankulor N, Louvi A, Bilgüvar K, Pamir M, Özduman K, Kilic T, Knight J, Simon M, Horbinski C, Kalamarides M, Timmer M, Heimberger A, Mishra-Gorur K, Moliterno J, Yasuno K, Günel M. Super-enhancer hijacking drives ectopic expression of hedgehog pathway ligands in meningiomas. Nature Communications 2023, 14: 6279. PMID: 37805627, PMCID: PMC10560290, DOI: 10.1038/s41467-023-41926-y.Peer-Reviewed Original Research
2019
The Notch pathway in CNS homeostasis and neurodegeneration
Ho DM, Artavanis‐Tsakonas S, Louvi A. The Notch pathway in CNS homeostasis and neurodegeneration. WIREs Mechanisms Of Disease 2019, 9: e358. PMID: 31502763, DOI: 10.1002/wdev.358.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCentral Nervous SystemHomeostasisHumansMutationNeurodegenerative DiseasesReceptors, NotchSignal TransductionConceptsNervous system developmentCNS homeostasisNotch pathway activityNeurodegenerative diseasesCerebral autosomal dominant arteriopathyAcute brain traumaChronic neurodegenerative conditionsProgressive neurodegenerative diseaseAutosomal dominant arteriopathyCellular contextCentral nervous systemAmyotrophic lateral sclerosisNotch signalsAdult organismNotch activityNotch pathwayNeural developmentMultiple sclerosisAdult neurogenesisBrain traumaPathway activitySubcortical infarctsLateral sclerosisNOTCH3 mutationsHereditary stroke
2018
Notch2 Signaling Maintains NSC Quiescence in the Murine Ventricular-Subventricular Zone
Engler A, Rolando C, Giachino C, Saotome I, Erni A, Brien C, Zhang R, Zimber-Strobl U, Radtke F, Artavanis-Tsakonas S, Louvi A, Taylor V. Notch2 Signaling Maintains NSC Quiescence in the Murine Ventricular-Subventricular Zone. Cell Reports 2018, 22: 992-1002. PMID: 29386140, DOI: 10.1016/j.celrep.2017.12.094.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell DifferentiationLateral VentriclesMiceNeural Stem CellsReceptor, Notch2Signal TransductionConceptsV-SVZ neural stem cellsVentricular-subventricular zoneNeural stem cellsQuiescent neural stem cellsRostral migratory streamNew olfactory bulb neuronsNSC quiescenceOlfactory bulb neuronsLoss of Notch2Bulb neuronsNew neuronsAdult forebrainOB lineageAging-like phenotypesMigratory streamNotch2 functionNeuronsNotch2Canonical Notch signalingNeurogenesisStem cellsNotch signalingCell cycleForebrainQuiescence
2016
Notch1 and Notch2 receptors regulate mouse and human gastric antral epithelial cell homoeostasis
Gifford GB, Demitrack ES, Keeley TM, Tam A, La Cunza N, Dedhia PH, Spence JR, Simeone DM, Saotome I, Louvi A, Siebel CW, Samuelson LC. Notch1 and Notch2 receptors regulate mouse and human gastric antral epithelial cell homoeostasis. Gut 2016, 66: 1001. PMID: 26933171, PMCID: PMC5009003, DOI: 10.1136/gutjnl-2015-310811.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntibodies, Monoclonal, HumanizedApoptosisCell DifferentiationCell ProliferationCells, CulturedDibenzazepinesEpithelial CellsFemaleGastric MucosaGene ExpressionHomeostasisHumansMaleMiceMice, Inbred C57BLMice, TransgenicOrganoidsPyloric AntrumReceptor, Notch1Receptor, Notch2Receptors, G-Protein-CoupledSignal TransductionStem CellsConceptsEpithelial cell homeostasisCell homeostasisNotch receptorsNotch inhibitor dibenzazepineGlobal Notch inhibitionStem cellsAntral stem cellsHuman antral glandsAnalysis of miceNotch pathway receptorsLgr5 stem cellsCellular differentiationNotch signalingNotch2 receptorMolecular approachesPathway receptorsNotch pathway inhibitionHuman organoidsEpithelial cell proliferationNotch inhibitionInhibition of Notch1Notch inhibitorsOrganoid growthCell proliferationNotch2
2015
Structure and vascular function of MEKK3–cerebral cavernous malformations 2 complex
Fisher OS, Deng H, Liu D, Zhang Y, Wei R, Deng Y, Zhang F, Louvi A, Turk BE, Boggon TJ, Su B. Structure and vascular function of MEKK3–cerebral cavernous malformations 2 complex. Nature Communications 2015, 6: 7937. PMID: 26235885, PMCID: PMC4526114, DOI: 10.1038/ncomms8937.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnimals, NewbornBlood VesselsCapillary PermeabilityCerebrovascular CirculationCrystallizationHemangioma, Cavernous, Central Nervous SystemIntracranial HemorrhagesMAP Kinase Kinase Kinase 3MiceMice, KnockoutMicrofilament ProteinsNeovascularization, PhysiologicRho GTP-Binding ProteinsRho-Associated KinasesSignal TransductionFunctional Synergy between Cholecystokinin Receptors CCKAR and CCKBR in Mammalian Brain Development
Nishimura S, Bilgüvar K, Ishigame K, Sestan N, Günel M, Louvi A. Functional Synergy between Cholecystokinin Receptors CCKAR and CCKBR in Mammalian Brain Development. PLOS ONE 2015, 10: e0124295. PMID: 25875176, PMCID: PMC4398320, DOI: 10.1371/journal.pone.0124295.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnimals, NewbornBone Morphogenetic Protein 7Cell MovementChemokine CXCL12CholecystokininCorpus CallosumEmbryo, MammalianGene Expression ProfilingGene Expression Regulation, DevelopmentalHomozygoteHumansInterneuronsMiceMice, KnockoutMidline Thalamic NucleiMutationNeocortexNeuropilin-2Receptor, Cholecystokinin AReceptor, Cholecystokinin BReceptors, N-Methyl-D-AspartateSignal TransductionTranscriptomeConceptsCCK receptorsBrain developmentMammalian neocortical developmentCentral nervous systemCortical interneuron migrationHomozygous mutant miceMammalian brain developmentPeripheral organsReceptor lossCorpus callosumCortical developmentPostnatal brainAbundant neuropeptideNervous systemInterneuron migrationMutant miceEmbryonic neocortexNeocortical developmentReceptorsPeptide hormonesG proteinsCholecystokininReciprocal expressionCCKBRBrain
2014
Ccm3, a gene associated with cerebral cavernous malformations, is required for neuronal migration
Louvi A, Nishimura S, Günel M. Ccm3, a gene associated with cerebral cavernous malformations, is required for neuronal migration. Development 2014, 141: 1404-1415. PMID: 24595293, PMCID: PMC3943187, DOI: 10.1242/dev.093526.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsApoptosis Regulatory ProteinsCell MovementCell ProliferationCyclin-Dependent Kinase 5FemaleHemangioma, Cavernous, Central Nervous SystemIntracellular Signaling Peptides and ProteinsMiceMice, KnockoutMice, TransgenicNeocortexNeural Stem CellsNeurogliaPregnancyRho GTP-Binding ProteinsRhoA GTP-Binding ProteinSignal TransductionConceptsCerebral cavernous malformation 3Neuronal migrationCerebral cavernous malformationsRadial glia progenitorsCell non-autonomous functionCerebrovascular disordersPyramidal neuronsCortical plateLaminar positioningSubventricular zoneCortical developmentCavernous malformationsRadial gliaLoss of functionNascent neuronsNeuronal morphologySevere malformationsGlia progenitorsNeural progenitorsNeuronsNon-autonomous functionsMalformationsRhoA pathwayPossible interactionsGlia
2012
Notch and disease: A growing field
Louvi A, Artavanis-Tsakonas S. Notch and disease: A growing field. Seminars In Cell And Developmental Biology 2012, 23: 473-480. PMID: 22373641, PMCID: PMC4369912, DOI: 10.1016/j.semcdb.2012.02.005.Peer-Reviewed Original ResearchConceptsCellular fate choicesAdult stem cellsInvolvement of NotchFate choiceNotch receptorsHuman diseasesNormal developmentPleiotropic fashionStem cellsRational therapeutic avenueBiologyTherapeutic avenuesBroad actionPathwayProfound involvementComplex controlExperimental systemNotchRelated pathologiesCellsReceptorsPathobiology
2011
Notch Lineages and Activity in Intestinal Stem Cells Determined by a New Set of Knock-In Mice
Fre S, Hannezo E, Sale S, Huyghe M, Lafkas D, Kissel H, Louvi A, Greve J, Louvard D, Artavanis-Tsakonas S. Notch Lineages and Activity in Intestinal Stem Cells Determined by a New Set of Knock-In Mice. PLOS ONE 2011, 6: e25785. PMID: 21991352, PMCID: PMC3185035, DOI: 10.1371/journal.pone.0025785.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBasic Helix-Loop-Helix Transcription FactorsCell DifferentiationCell LineageClone CellsEnterocytesGene Knock-In TechniquesGene TargetingHomeodomain ProteinsIntegrasesIntestinesKineticsMiceMice, Inbred C57BLMice, TransgenicMicrovilliMultipotent Stem CellsReceptors, NotchSequence Homology, Amino AcidSignal TransductionStem CellsTranscription Factor HES-1Transcription, GeneticHypomorphic Notch 3 alleles link Notch signaling to ischemic cerebral small-vessel disease
Arboleda-Velasquez JF, Manent J, Lee JH, Tikka S, Ospina C, Vanderburg CR, Frosch MP, Rodríguez-Falcón M, Villen J, Gygi S, Lopera F, Kalimo H, Moskowitz MA, Ayata C, Louvi A, Artavanis-Tsakonas S. Hypomorphic Notch 3 alleles link Notch signaling to ischemic cerebral small-vessel disease. Proceedings Of The National Academy Of Sciences Of The United States Of America 2011, 108: e128-e135. PMID: 21555590, PMCID: PMC3102344, DOI: 10.1073/pnas.1101964108.Peer-Reviewed Original ResearchConceptsSmall vessel diseaseIschemic cerebral small-vessel diseaseCerebral small vessel diseaseGranular osmiophilic materialMouse modelCerebral autosomal dominant arteriopathySmooth muscle cell degenerationBrain vessel pathologyPrevalent human conditionVascular smooth muscle cellsNotch 3 mutationPostmortem human tissueAutosomal dominant arteriopathyTransgenic mouse modelIschemic stroke susceptibilityAge-dependent phenotypeMuscle cell degenerationSmooth muscle cellsNotch-3 receptorCommon monogenic causeIschemic strokeVascular dementiaSubcortical infarctsReceptor activity assaysHuman brain vesselsCilia in the CNS: The Quiet Organelle Claims Center Stage
Louvi A, Grove EA. Cilia in the CNS: The Quiet Organelle Claims Center Stage. Neuron 2011, 69: 1046-1060. PMID: 21435552, PMCID: PMC3070490, DOI: 10.1016/j.neuron.2011.03.002.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCentral Nervous SystemCiliaHedgehog ProteinsHumansNeurogenesisSignal TransductionConceptsPrimary ciliaSonic hedgehog (Shh) signal transductionHedgehog signal transductionHuman disease syndromesProtein traffickingBrain tumor formationSignal transductionCellular organellesGenetic disruptionSpecialized modeNeuronal signalingCiliaTumor formationAdult CNSAdult neurogenesisEukaryotesVertebratesOrganellesTransductionTraffickingSignalingBiologyDisease syndromeMajor linesNeurogenesis
2008
Linking Notch signaling to ischemic stroke
Arboleda-Velasquez JF, Zhou Z, Shin HK, Louvi A, Kim HH, Savitz SI, Liao JK, Salomone S, Ayata C, Moskowitz MA, Artavanis-Tsakonas S. Linking Notch signaling to ischemic stroke. Proceedings Of The National Academy Of Sciences Of The United States Of America 2008, 105: 4856-4861. PMID: 18347334, PMCID: PMC2290794, DOI: 10.1073/pnas.0709867105.Peer-Reviewed Original ResearchConceptsVascular smooth muscle cellsSmooth muscle cellsGenetic rescue experimentsUnderlying cellular pathwaysSpecific gene targetsKnockout mouse modelCellular pathwaysIschemic strokeGene targetsRescue experimentsSMC functionLong-term neurological disabilityMolecular analysisPathophysiology of strokeIschemic phenotypeMuscle cellsNotch-3Neurological disabilityCommon causeMouse modelStriking susceptibilityParaloguesStrokeNotchPhenotype
2006
CADASIL: A Critical Look at a Notch Disease
Louvi A, Arboleda-Velasquez JF, Artavanis-Tsakonas S. CADASIL: A Critical Look at a Notch Disease. Developmental Neuroscience 2006, 28: 5-12. PMID: 16508299, DOI: 10.1159/000090748.Peer-Reviewed Original ResearchNotch signalling in vertebrate neural development
Louvi A, Artavanis-Tsakonas S. Notch signalling in vertebrate neural development. Nature Reviews Neuroscience 2006, 7: 93-102. PMID: 16429119, DOI: 10.1038/nrn1847.Peer-Reviewed Original Research
2005
CCM2 Expression Parallels That of CCM1
Seker A, Pricola KL, Guclu B, Ozturk AK, Louvi A, Gunel M. CCM2 Expression Parallels That of CCM1. Stroke 2005, 37: 518-523. PMID: 16373645, DOI: 10.1161/01.str.0000198835.49387.25.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBlotting, WesternBrainCarrier ProteinsCells, CulturedCentral Nervous SystemCerebral CortexChlorocebus aethiopsCOS CellsEndothelium, VascularHumansImmunohistochemistryIn Situ HybridizationKRIT1 ProteinMiceMicrotubule-Associated ProteinsMuscle, SmoothMutationNeuronsPhenotypeProto-Oncogene ProteinsRNA, MessengerSignal TransductionTime FactorsTwo-Hybrid System TechniquesUmbilical VeinsConceptsCerebral cavernous malformationsProtein expressionExtracerebral tissuesFamilial cerebral cavernous malformationsArterial vascular endotheliumPostnatal mouse brainSmooth muscle cellsVascular wall elementsWestern blot analysisExpression patternsPyramidal neuronsVenous circulationCerebral tissueNeurovascular diseasesCavernous malformationsImmunohistochemical analysisVascular endotheliumMouse brainMRNA expressionMuscle cellsFoot processesEpithelial cellsExpression parallelsDisease phenotypeSpatial expression patterns
1997
Insulin-like growth factor II stimulates cell proliferation through the insulin receptor
Morrione A, Valentinis B, Xu S, Yumet G, Louvi A, Efstratiadis A, Baserga R. Insulin-like growth factor II stimulates cell proliferation through the insulin receptor. Proceedings Of The National Academy Of Sciences Of The United States Of America 1997, 94: 3777-3782. PMID: 9108054, PMCID: PMC20517, DOI: 10.1073/pnas.94.8.3777.Peer-Reviewed Original ResearchMeSH Keywords3T3 CellsAnimalsCell DivisionCell LineHumansInsulin-Like Growth Factor IIMicePlasmidsReceptor, InsulinSignal TransductionTransfectionConceptsInsulin receptorSerum-free mediumType 1 insulin-like growth factor receptorCell proliferationInsulin-like growth factor receptorR cellsIGF-IIWild-type counterpartsGrowth factor receptorGrowth factor supplementationInsulin-like growth factor IITargeted disruptionFactor receptorGrowth factor IIFactor supplementationGrowth factorPlasmidAdditional plasmidsCellsReceptorsFactor IIProliferationGenesIGF1RFibroblasts