2024
Hebbian instruction of axonal connectivity by endogenous correlated spontaneous activity
Matsumoto N, Barson D, Liang L, Crair M. Hebbian instruction of axonal connectivity by endogenous correlated spontaneous activity. Science 2024, 385: eadh7814. PMID: 39146415, DOI: 10.1126/science.adh7814.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAxonsMiceMice, Mutant StrainsNeuronal PlasticityReceptors, N-Methyl-D-AspartateRetinal Ganglion CellsSuperior ColliculiConceptsSpontaneous activitySpontaneous retinal wavesAxonal connectionsPatterns of correlated activityNeonatal miceEvidence in vivoRetinal wavesPostsynaptic neuronsNeuronal activityIn vivoAxonal arborsAxonal processesAxonsRetinocollicular axonsNeural connectionsIndividual axonsMorphological changesSubcellular precisionEndogenous pattern
2021
Retinal waves prime visual motion detection by simulating future optic flow
Ge X, Zhang K, Gribizis A, Hamodi AS, Sabino AM, Crair MC. Retinal waves prime visual motion detection by simulating future optic flow. Science 2021, 373 PMID: 34437090, PMCID: PMC8841103, DOI: 10.1126/science.abd0830.Peer-Reviewed Original ResearchConceptsEye-specific segregationSpontaneous retinal wavesVisual response propertiesSpontaneous retinal activityDirection-selective responsesSuperior colliculus neuronsOptic flow patternsRetinal wavesRetinal activityColliculus neuronsRetinal circuitsSpontaneous activityChronic disruptionVisual motion detectionEye openingTransient windowResponse propertiesOptic flowSensory experienceNeuronsPreservation of vision after CaMKII-mediated protection of retinal ganglion cells
Guo X, Zhou J, Starr C, Mohns EJ, Li Y, Chen EP, Yoon Y, Kellner CP, Tanaka K, Wang H, Liu W, Pasquale LR, Demb JB, Crair MC, Chen B. Preservation of vision after CaMKII-mediated protection of retinal ganglion cells. Cell 2021, 184: 4299-4314.e12. PMID: 34297923, PMCID: PMC8530265, DOI: 10.1016/j.cell.2021.06.031.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAxonsBrainCalcium-Calmodulin-Dependent Protein Kinase Type 2Cyclic AMP Response Element-Binding ProteinCytoprotectionDependovirusDisease Models, AnimalEnzyme ActivationGlaucomaMice, Inbred C57BLNeurotoxinsOptic Nerve InjuriesRetinal Ganglion CellsSignal TransductionVision, OcularConceptsRetinal ganglion cellsRGC survivalRGC somataGanglion cellsDiverse insultsRGC axon projectionOptic nerve injurySole output neuronsPreservation of visionElevated intraocular pressureIrreversible vision lossPathological statesExcitotoxic injuryNerve injuryGlaucoma modelIntraocular pressureRGC axonsVision lossVisual functionNormal retinaVisual cortexAxon projectionsGenetic deficiencyInjuryRetina
2016
Reconnecting Eye to Brain
Crair MC, Mason CA. Reconnecting Eye to Brain. Journal Of Neuroscience 2016, 36: 10707-10722. PMID: 27798125, PMCID: PMC5083002, DOI: 10.1523/jneurosci.1711-16.2016.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAxonsBrainHumansOcular Physiological PhenomenaOptic NerveRetinal Ganglion CellsVisual PathwaysConceptsAudacious Goals InitiativeNational Eye InstituteRetinal ganglion cellsSystem regenerationEye InstituteGanglion cellsVisual functionTraumatic injuryVisual system functionNeural regenerationTarget engagementDisease-induced degenerationRegenerative capacityVisual systemAxon guidanceSystem functionSignificant barriersCurrent understandingSatellite meetingInjuryAxonsDegenerationNeuronsBrainRetinal Wave Patterns Are Governed by Mutual Excitation among Starburst Amacrine Cells and Drive the Refinement and Maintenance of Visual Circuits
Xu HP, Burbridge TJ, Ye M, Chen M, Ge X, Zhou ZJ, Crair MC. Retinal Wave Patterns Are Governed by Mutual Excitation among Starburst Amacrine Cells and Drive the Refinement and Maintenance of Visual Circuits. Journal Of Neuroscience 2016, 36: 3871-3886. PMID: 27030771, PMCID: PMC4812142, DOI: 10.1523/jneurosci.3549-15.2016.Peer-Reviewed Original ResearchMeSH KeywordsAction PotentialsAge FactorsAmacrine CellsAnimalsAnimals, NewbornCalciumCholera ToxinCholine O-AcetyltransferaseCholinergic AgentsGene Expression Regulation, DevelopmentalGreen Fluorescent ProteinsIn Vitro TechniquesMiceMice, TransgenicPatch-Clamp TechniquesReceptors, NicotinicRetinaRetinal Ganglion CellsVesicular Glutamate Transport Protein 1Visual PathwaysConceptsEye-specific segregationVisual circuit developmentStarburst amacrine cellsStage III retinal wavesRetinal ganglion cellsRetinal wavesAmacrine cellsGlutamatergic wavesGanglion cellsSpontaneous activityVisual circuitsStage IICircuit developmentHigher-order visual areasNicotinic acetylcholine receptorsRetinal cell typesMammalian visual systemAcetylcholine receptorsΒ2-nAChRsVisual areasPatterned activityPatterning of activityΒ2 subunitCell typesCells
2015
Spatial pattern of spontaneous retinal waves instructs retinotopic map refinement more than activity frequency
Xu HP, Burbridge TJ, Chen MG, Ge X, Zhang Y, Zhou ZJ, Crair MC. Spatial pattern of spontaneous retinal waves instructs retinotopic map refinement more than activity frequency. Developmental Neurobiology 2015, 75: 621-640. PMID: 25787992, PMCID: PMC4697738, DOI: 10.1002/dneu.22288.Peer-Reviewed Original ResearchConceptsSpontaneous retinal activityEye-specific segregationRetinal activityRetinal ganglion cell projectionsEye-specific projectionsGanglion cell projectionsPrecise neural connectionsRetinotopic map refinementSpontaneous retinal wavesNicotinic acetylcholine receptorsInstructive roleEye of originRetinal wavesRetinotopic refinementSpontaneous activityRetinotopic mapAcetylcholine receptorsDevelopment of retinotopyBrain wiringPermissive roleMutant miceNeural connectionsOverall activity levelsSpontaneous wavesMice
2014
Visual Circuit Development Requires Patterned Activity Mediated by Retinal Acetylcholine Receptors
Burbridge TJ, Xu HP, Ackman JB, Ge X, Zhang Y, Ye MJ, Zhou ZJ, Xu J, Contractor A, Crair MC. Visual Circuit Development Requires Patterned Activity Mediated by Retinal Acetylcholine Receptors. Neuron 2014, 84: 1049-1064. PMID: 25466916, PMCID: PMC4258148, DOI: 10.1016/j.neuron.2014.10.051.Peer-Reviewed Original ResearchMeSH KeywordsAction PotentialsAge FactorsAnalysis of VarianceAnimalsAnimals, NewbornCalciumCyclic AMPCyclic GMPCyclooxygenase InhibitorsEye ProteinsFunctional LateralityHomeodomain ProteinsIn Vitro TechniquesMeclofenamic AcidMiceMice, TransgenicPaired Box Transcription FactorsPAX6 Transcription FactorReceptors, NicotinicRepressor ProteinsRetinaRetinal Ganglion CellsRNA, MessengerVisual PathwaysConceptsRetinal wavesCircuit refinementNervous systemNeural circuitsVisual circuit developmentSpontaneous retinal activityRetinal activityRetinorecipient regionsSpontaneous activityAcetylcholine receptorsPharmacological manipulationVisual circuitsSynaptic connectionsVertebrate nervous systemNeural activityOnset of sensationAltered patternCircuit developmentSensory systemsCausal linkEarly developmentActivityBrainReceptors
2012
Role of adenylate cyclase 1 in retinofugal map development
Dhande OS, Bhatt S, Anishchenko A, Elstrott J, Iwasato T, Swindell EC, Xu H, Jamrich M, Itohara S, Feller MB, Crair MC. Role of adenylate cyclase 1 in retinofugal map development. The Journal Of Comparative Neurology 2012, 520: 1562-1583. PMID: 22102330, PMCID: PMC3563095, DOI: 10.1002/cne.23000.Peer-Reviewed Original ResearchConceptsLateral geniculate nucleusDorsal lateral geniculate nucleusAdenylate cyclase 1Superior colliculusRetinal wavesRetinal ganglion cell projectionsEye-specific segregationGanglion cell projectionsSpontaneous retinal wavesSecond postnatal weekActivity-dependent processesCyclase 1Production of cAMPRGC axonsGeniculate nucleusPostnatal weekMammalian visual systemDevelopment of retinotopySomatotopic mapMutant miceSensory peripheryMiceConditional deletionTermination zonesDependent manner
2011
Visual map development depends on the temporal pattern of binocular activity in mice
Zhang J, Ackman JB, Xu HP, Crair MC. Visual map development depends on the temporal pattern of binocular activity in mice. Nature Neuroscience 2011, 15: 298-307. PMID: 22179110, PMCID: PMC3267873, DOI: 10.1038/nn.3007.Peer-Reviewed Original ResearchMeSH KeywordsAction PotentialsAnimalsAnimals, NewbornBrain MappingCalciumChannelrhodopsinsCritical Period, PsychologicalFunctional LateralityIn Vitro TechniquesLightLuminescent ProteinsMiceMice, Inbred C57BLMice, TransgenicNeuronal PlasticityPatch-Clamp TechniquesReceptors, NicotinicRetinaRetinal Ganglion CellsSuperior ColliculiTime FactorsVision, BinocularVisual PathwaysConceptsDorsal lateral geniculate nucleusEye-specific segregationSpontaneous retinal wavesLateral geniculate nucleusPrimary visual cortexMouse visual systemBinocular activityRetinal wavesGeniculate nucleusCircuit refinementSuperior colliculusSpecific temporal featuresVisual cortexBursts of activityDefinitive evidenceVisual systemColliculusBinocularityCortexMiceActivityAn Instructive Role for Patterned Spontaneous Retinal Activity in Mouse Visual Map Development
Xu HP, Furman M, Mineur YS, Chen H, King SL, Zenisek D, Zhou ZJ, Butts DA, Tian N, Picciotto MR, Crair MC. An Instructive Role for Patterned Spontaneous Retinal Activity in Mouse Visual Map Development. Neuron 2011, 70: 1115-1127. PMID: 21689598, PMCID: PMC3119851, DOI: 10.1016/j.neuron.2011.04.028.Peer-Reviewed Original ResearchConceptsSpontaneous retinal activityRetinal activityRetinal ganglion cell projectionsEye-specific segregationGanglion cell projectionsSpontaneous retinal wavesActivity-dependent refinementRetinal ganglion cellsMouse visual systemComplex neural circuitsEye of originRetinal wavesGanglion cellsRetinotopic refinementNeuronal activitySpontaneous activityMammalian visual systemAcetylcholine receptorsNeuronal connectivityMammalian brainNeural circuitsOverall activity levelsActivity levelsBrainVisual systemTransfection of mouse retinal ganglion cells by in vivo electroporation.
Dhande OS, Crair MC. Transfection of mouse retinal ganglion cells by in vivo electroporation. Journal Of Visualized Experiments 2011 PMID: 21525846, PMCID: PMC3169246, DOI: 10.3791/2678.Peer-Reviewed Original ResearchDevelopment of Single Retinofugal Axon Arbors in Normal and β2 Knock-Out Mice
Dhande OS, Hua EW, Guh E, Yeh J, Bhatt S, Zhang Y, Ruthazer ES, Feller MB, Crair MC. Development of Single Retinofugal Axon Arbors in Normal and β2 Knock-Out Mice. Journal Of Neuroscience 2011, 31: 3384-3399. PMID: 21368050, PMCID: PMC3060716, DOI: 10.1523/jneurosci.4899-10.2011.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnimals, NewbornAxonsMiceMice, Inbred C57BLMice, KnockoutReceptors, NicotinicRetinaRetinal Ganglion CellsSuperior ColliculiVisual PathwaysConceptsDorsal lateral geniculate nucleusRetinal ganglion cellsSuperior colliculusAxon arborsRetinotopic refinementEye-specific segregationReceptor mutant miceLateral geniculate nucleusActivity-dependent mechanismsNormal developmentWT miceRGC axonsRetinal wavesGanglion cellsGeniculate nucleusMutant miceRole of activityMiceSpecific cuesArborsSparse branchesSame ageLabeling techniqueMaturationDevelopmental period
2010
The Immune Protein CD3ζ Is Required for Normal Development of Neural Circuits in the Retina
Xu HP, Chen H, Ding Q, Xie ZH, Chen L, Diao L, Wang P, Gan L, Crair MC, Tian N. The Immune Protein CD3ζ Is Required for Normal Development of Neural Circuits in the Retina. Neuron 2010, 65: 503-515. PMID: 20188655, PMCID: PMC3037728, DOI: 10.1016/j.neuron.2010.01.035.Peer-Reviewed Original ResearchConceptsEye-specific segregationCentral nervous systemRetinal ganglion cellsDendritic motilitySynaptic activityActivity-dependent synapse formationPossible retinal originRGC axon projectionImmune proteinsImmune-deficient miceDendritic densityGanglion cellsClass I major histocompatibility complex genesRetinal originNervous systemSynapse formationAxon projectionsMHCI receptorNeural circuitsSynaptic wiringSelective defectMajor histocompatibility complex (MHC) genesMiceRetinaNormal development
2009
Consequences of axon guidance defects on the development of retinotopic receptive fields in the mouse colliculus
Chandrasekaran AR, Furuta Y, Crair MC. Consequences of axon guidance defects on the development of retinotopic receptive fields in the mouse colliculus. The Journal Of Physiology 2009, 587: 953-963. PMID: 19153163, PMCID: PMC2673768, DOI: 10.1113/jphysiol.2008.160952.Peer-Reviewed Original ResearchConceptsSuperior colliculusMutant miceBone morphogenetic protein receptorRetinal ganglion cell axonsGuidance moleculesSpontaneous retinal wavesGanglion cell axonsSuperficial superior colliculusReceptive field propertiesRetinotopic receptive fieldsActivity-dependent factorsMore RGCsRetinocollicular projectionRetinal wavesEctopic projectionsVentral retinaCell axonsRetinotopic map formationAnatomical defectsAction potentialsActivity-dependent learning ruleSpontaneous wavesRetinaRGCsMice
2008
Mechanisms of response homeostasis during retinocollicular map formation
Shah RD, Crair MC. Mechanisms of response homeostasis during retinocollicular map formation. The Journal Of Physiology 2008, 586: 4363-4369. PMID: 18617562, PMCID: PMC2614012, DOI: 10.1113/jphysiol.2008.157222.Peer-Reviewed Original ResearchMeSH KeywordsAfferent PathwaysAnimalsHomeostasisMiceMice, KnockoutNeuronal PlasticityRetinal Ganglion CellsSuperior ColliculiSynapsesConceptsResponse homeostasisSynaptic plasticityIntrinsic excitabilityRetinocollicular map formationActivity-dependent developmentMouse superior colliculusHomeostatic plasticity mechanismsTotal synaptic inputReceptive fieldsDifferent mutant miceVisual receptive fieldsStrength of synapsesDifferent cellular mechanismsHebbian synaptic plasticityNeuronal outputSynaptic inputsSuperior colliculusRunaway excitationSynaptic scalingMutant miceNeural circuitsFunctional connectivityIndividual neuronsHomeostatic mechanismsCellular mechanisms
2005
Evidence for an Instructive Role of Retinal Activity in Retinotopic Map Refinement in the Superior Colliculus of the Mouse
Chandrasekaran AR, Plas DT, Gonzalez E, Crair MC. Evidence for an Instructive Role of Retinal Activity in Retinotopic Map Refinement in the Superior Colliculus of the Mouse. Journal Of Neuroscience 2005, 25: 6929-6938. PMID: 16033903, PMCID: PMC6725341, DOI: 10.1523/jneurosci.1470-05.2005.Peer-Reviewed Original ResearchConceptsRetinotopic map refinementRetinal activitySuperior colliculusActivity-dependent factorsNasal-temporal axisSpontaneous retinal activityWild-type miceActivity-dependent cuesActivity-dependent mechanismsRetinotopic map developmentAxon guidance cuesGuidance cuesMolecular mechanismsRetinal wavesPharmacological interventionsMouse modelRetinotopic mapColliculusSame animalsMicePreferential roleReceptive fieldsPhysiological methodsInstructive roleMap refinement
2002
Brn3b/Brn3c double knockout mice reveal an unsuspected role for Brn3c in retinal ganglion cell axon outgrowth.
Wang SW, Mu X, Bowers WJ, Kim DS, Plas DJ, Crair MC, Federoff HJ, Gan L, Klein WH. Brn3b/Brn3c double knockout mice reveal an unsuspected role for Brn3c in retinal ganglion cell axon outgrowth. Development 2002, 129: 467-77. PMID: 11807038, DOI: 10.1242/dev.129.2.467.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAxonsCell DifferentiationCulture TechniquesDNA-Binding ProteinsFemaleGene TargetingHumansMaleMiceMice, KnockoutMicroscopy, FluorescenceNeuritesRetinaRetinal Ganglion CellsTranscription Factor Brn-3Transcription Factor Brn-3ATranscription Factor Brn-3BTranscription Factor Brn-3CTranscription FactorsConceptsDouble knockout miceGanglion cell differentiationRetinal ganglion cell differentiationRetinal ganglion cellsOptic chiasmKnockout miceGanglion cellsMost retinal ganglion cellsRetinal ganglion cell axonsRetinal ganglion cell developmentGanglion cell axonsAxon outgrowthGanglion cell developmentCell differentiationDorsal rootsProjection neuronsTrigeminal ganglionCell axonsRetinal explantsPOU domain transcription factorBrn3bBrn3cMiceChiasmInner ear