2016
Reorganization of Intact Descending Motor Circuits to Replace Lost Connections After Injury
Fink KL, Cafferty WB. Reorganization of Intact Descending Motor Circuits to Replace Lost Connections After Injury. Neurotherapeutics 2016, 13: 370-381. PMID: 26846379, PMCID: PMC4824020, DOI: 10.1007/s13311-016-0422-x.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsEfferent PathwaysHumansMotor NeuronsNerve RegenerationNeuronal PlasticitySpinal CordSpinal Cord InjuriesConceptsSpinal cord injuryCentral nervous systemMotor pathwaysFunctional recoveryMotor functionMotor circuitsIntact circuitsIncomplete spinal cord injuryPartial spinal cord injuryAdult central nervous systemCorticospinal tract lesionsLimited spontaneous recoveryPermanent functional impairmentSpontaneous functional recoveryExperimental rodent modelsIntrinsic growth capacityRestoration of functionFine motor behaviorRaphespinal tractsDenervated sideTract lesionsCord injuryRubrospinal tractReticulospinal tractCNS neurons
2015
Comprehensive Corticospinal Labeling with mu-crystallin Transgene Reveals Axon Regeneration after Spinal Cord Trauma in ngr1−/− Mice
Fink KL, Strittmatter SM, Cafferty WB. Comprehensive Corticospinal Labeling with mu-crystallin Transgene Reveals Axon Regeneration after Spinal Cord Trauma in ngr1−/− Mice. Journal Of Neuroscience 2015, 35: 15403-15418. PMID: 26586827, PMCID: PMC4649010, DOI: 10.1523/jneurosci.3165-15.2015.Peer-Reviewed Original ResearchMeSH KeywordsAmidinesAnalysis of VarianceAnimalsAxonsBiotinCrystallinsDextransDisease Models, AnimalFunctional LateralityGene Expression RegulationGlial Fibrillary Acidic ProteinGPI-Linked ProteinsLuminescent ProteinsMiceMice, Inbred C57BLMice, TransgenicMu-CrystallinsMyelin ProteinsNerve RegenerationNogo Receptor 1Pyramidal TractsReceptors, Cell SurfaceRecovery of FunctionSpinal Cord InjuriesConceptsCorticospinal tractCST axonsTransgenic miceMotor tractsDextran amineFunctional deficitsSpinal cordAxon regenerationSpinal Cord Injury StudySpontaneous axon regenerationSpinal cord traumaNogo receptor 1Permanent functional deficitsPersistent functional deficitsBilateral pyramidotomyDorsal hemisectionMidthoracic cordCord traumaMotor pathwaysAdult CNSCST regenerationInjury studiesLesion siteRegenerating fibersNeural repairGene-Silencing Screen for Mammalian Axon Regeneration Identifies Inpp5f (Sac2) as an Endogenous Suppressor of Repair after Spinal Cord Injury
Zou Y, Stagi M, Wang X, Yigitkanli K, Siegel CS, Nakatsu F, Cafferty WB, Strittmatter SM. Gene-Silencing Screen for Mammalian Axon Regeneration Identifies Inpp5f (Sac2) as an Endogenous Suppressor of Repair after Spinal Cord Injury. Journal Of Neuroscience 2015, 35: 10429-10439. PMID: 26203138, PMCID: PMC4510284, DOI: 10.1523/jneurosci.1718-15.2015.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAxonsDisease Models, AnimalGene Knockdown TechniquesImmunohistochemistryInositol Polyphosphate 5-PhosphatasesMiceMice, Inbred C57BLMice, KnockoutNerve RegenerationPhosphoric Monoester HydrolasesRecovery of FunctionReverse Transcriptase Polymerase Chain ReactionSpinal Cord InjuriesConceptsSpinal cord injuryCord injuryEndogenous suppressorAxon regenerationNonoverlapping substrate specificityGenome-wide scaleHigh-throughput functional screensFunctional recoveryAxonal regenerationCNS axon repairSpinal cord injury researchDorsal hemisection injuryMammalian genesPI3K/AKT/mTOR pathwayCNS axon growthAKT/mTOR pathwayLipid phosphataseCorticospinal tract axonsCNS axon regenerationAdult mammalian CNSFunctional screenSubstrate specificityNovel suppressorShRNA resultsINPP5F
2012
PlexinA2 limits recovery from corticospinal axotomy by mediating oligodendrocyte-derived Sema6A growth inhibition
Shim SO, Cafferty WB, Schmidt EC, Kim BG, Fujisawa H, Strittmatter SM. PlexinA2 limits recovery from corticospinal axotomy by mediating oligodendrocyte-derived Sema6A growth inhibition. Molecular And Cellular Neuroscience 2012, 50: 193-200. PMID: 22564823, PMCID: PMC3383336, DOI: 10.1016/j.mcn.2012.04.007.Peer-Reviewed Original ResearchConceptsAxonal growthSpinal cordPellet retrieval taskCervical spinal cordWild-type miceContralateral gray matterAxon guidance cuesSevered fibersSprouted fibersAxonal sproutingCorticofugal projectionsFunctional recoveryBehavioral recoveryCNS injuryImpaired forelimbClass 3 semaphorinsCorticospinal fibersCorticospinal tractMedullary pyramidsSynaptic punctaInhibitor receptorsType miceUnilateral pyramidotomyNeuron inhibitionAdult traumaMyelin-derived ephrinB3 restricts axonal regeneration and recovery after adult CNS injury
Duffy P, Wang X, Siegel CS, Tu N, Henkemeyer M, Cafferty WB, Strittmatter SM. Myelin-derived ephrinB3 restricts axonal regeneration and recovery after adult CNS injury. Proceedings Of The National Academy Of Sciences Of The United States Of America 2012, 109: 5063-5068. PMID: 22411787, PMCID: PMC3323955, DOI: 10.1073/pnas.1113953109.Peer-Reviewed Original ResearchConceptsAxonal regenerationAxonal growthAdult mammalian central nervous systemAdult CNS injuryDorsal hemisection injurySpinal cord injuryMammalian central nervous systemWild-type miceCentral nervous systemCaudal spinal cordAxonal guidance cuesAxonal growth inhibitionLater time pointsGreater spasticityCNS traumaHemisection injuryCrush siteOptic nerveNeurological functionCNS injuryCord injuryTransection modelGrowth restrictionSpinal cordTraumatic injury
2009
Rho-Associated Kinase II (ROCKII) Limits Axonal Growth after Trauma within the Adult Mouse Spinal Cord
Duffy P, Schmandke A, Schmandke A, Sigworth J, Narumiya S, Cafferty WB, Strittmatter SM. Rho-Associated Kinase II (ROCKII) Limits Axonal Growth after Trauma within the Adult Mouse Spinal Cord. Journal Of Neuroscience 2009, 29: 15266-15276. PMID: 19955379, PMCID: PMC2855556, DOI: 10.1523/jneurosci.4650-09.2009.Peer-Reviewed Original ResearchMeSH KeywordsAmidesAnalysis of VarianceAnimalsAxonsBehavior, AnimalBrain InjuriesCA1 Region, HippocampalCells, CulturedCholera ToxinEnzyme InhibitorsGanglia, SpinalGene Expression RegulationMedian NeuropathyMiceMice, Inbred C57BLMice, KnockoutMyelin ProteinsNerve RegenerationNeuronsNogo ProteinsPyridinesReceptors, Calcitonin Gene-Related PeptideRhizotomyRho-Associated KinasesSpinal Cord InjuriesTime FactorsVersicansConceptsSpinal cordCNS traumaFunctional recoveryBasso Mouse Scale scoresSpinal Cord Injury StudyAxonal growthDorsal root entry zoneDorsal root ganglion neuronsAdult mouse spinal cordAxonal growth inhibitorsSpinal cord hemisectionRoot entry zoneSpinal cord injuryCaudal spinal cordMouse spinal cordDorsal hemisectionRaphespinal axonsDorsal rhizotomyCrush injuryCord hemisectionCorticospinal axonsChondroitin sulfate proteoglycanCord injuryGanglion neuronsInjury paradigms
2008
Chondroitinase ABC-Mediated Plasticity of Spinal Sensory Function
Cafferty WB, Bradbury EJ, Lidierth M, Jones M, Duffy PJ, Pezet S, McMahon SB. Chondroitinase ABC-Mediated Plasticity of Spinal Sensory Function. Journal Of Neuroscience 2008, 28: 11998-12009. PMID: 19005065, PMCID: PMC3844838, DOI: 10.1523/jneurosci.3877-08.2008.Peer-Reviewed Original ResearchMeSH KeywordsAction PotentialsAfferent PathwaysAnimalsChondroitin ABC LyaseChondroitin Sulfate ProteoglycansDisease Models, AnimalMaleNerve RegenerationNeural ConductionNeuronal PlasticityRatsRats, WistarRecovery of FunctionRhizotomySensation DisordersSensory Receptor CellsSpinal CordSpinal Cord InjuriesSpinal Nerve RootsTreatment OutcomeConceptsSpinal cord injuryFunctional restorationSensory functionSpinal sensory functionsPrimary afferent terminalsVivo electrophysiological recordingsIntact spinal circuitsEnzyme chondroitinase ABCIntrinsic growth potentialAfferent terminalsBehavioral recoveryIntraspinal injectionCord injurySensory deficitsSpinal cordSpinal circuitsAdult ratsMature CNSTherapeutic interventionsExperimental therapeuticsElectrophysiological recordingsAxon growthInjuryIntact pathwaysEnhance functionAxonal growth therapeutics: regeneration or sprouting or plasticity?
Cafferty WB, McGee AW, Strittmatter SM. Axonal growth therapeutics: regeneration or sprouting or plasticity? Trends In Neurosciences 2008, 31: 215-220. PMID: 18395807, PMCID: PMC2678051, DOI: 10.1016/j.tins.2008.02.004.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAstrocytesAxonsChondroitin Sulfate ProteoglycansMyelin SheathNerve RegenerationNeuronal PlasticitySignal TransductionConceptsAxonal growthAstroglial scarHigh clinical significanceFunctional recoveryNeurological injuryInciting eventFunctional deficitsSpinal cordClinical significanceAdult brainLoss of functionCell lossInhibitory factorAxonal connectivityAxonal anatomyAxonal extensionMolecular interventionsMyelinScarCordInjuryBrain
2007
Response to Correspondence: Kim et al., “Axon Regeneration in Young Adult Mice Lacking Nogo-A/B.” Neuron 38, 187–199
Cafferty WB, Kim JE, Lee JK, Strittmatter SM. Response to Correspondence: Kim et al., “Axon Regeneration in Young Adult Mice Lacking Nogo-A/B.” Neuron 38, 187–199. Neuron 2007, 54: 195-199. PMID: 17442242, PMCID: PMC2848952, DOI: 10.1016/j.neuron.2007.04.005.Peer-Reviewed Original ResearchFunctional Axonal Regeneration through Astrocytic Scar Genetically Modified to Digest Chondroitin Sulfate Proteoglycans
Cafferty WB, Yang SH, Duffy PJ, Li S, Strittmatter SM. Functional Axonal Regeneration through Astrocytic Scar Genetically Modified to Digest Chondroitin Sulfate Proteoglycans. Journal Of Neuroscience 2007, 27: 2176-2185. PMID: 17329414, PMCID: PMC2848955, DOI: 10.1523/jneurosci.5176-06.2007.Peer-Reviewed Original ResearchConceptsChondroitin sulfate proteoglycanRole of CSPGsTransgenic miceSensory axon regenerationMotor function recoveryFunctional axonal regenerationCombination-based therapyEnzyme chondroitinase ABCSulfate proteoglycanDorsal hemisectionAxotomized neuronsDorsal rhizotomyCorticospinal axonsCNS injuryFunction recoveryMyelin inhibitorsAxonal regenerationAstrocytic scarLocal efficacyTraumatic injuryAxon regenerationLesion siteInhibitory moleculesFunctional regenerationChondroitinase ABC
2005
Conditioning Injury-Induced Spinal Axon Regeneration Requires Signal Transducer and Activator of Transcription 3 Activation
Qiu J, Cafferty WB, McMahon SB, Thompson SW. Conditioning Injury-Induced Spinal Axon Regeneration Requires Signal Transducer and Activator of Transcription 3 Activation. Journal Of Neuroscience 2005, 25: 1645-1653. PMID: 15716400, PMCID: PMC6725934, DOI: 10.1523/jneurosci.3269-04.2005.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntigens, CDAxonsAxotomyCells, CulturedCholera ToxinCytokine Receptor gp130DNA-Binding ProteinsGanglia, SpinalGAP-43 ProteinInfusion Pumps, ImplantableJanus Kinase 2MaleMembrane GlycoproteinsNerve CrushNerve RegenerationNeuritesPhosphorylationProtein Processing, Post-TranslationalProtein-Tyrosine KinasesProto-Oncogene ProteinsRatsRats, WistarSciatic NerveSignal TransductionSpinal Cord InjuriesSTAT3 Transcription FactorTrans-ActivatorsTyrphostinsConceptsSciatic nerve transectionAdult spinal cordSpinal cordSignal transducerConditioning injuryNerve transectionDorsal columnsPerineural infusionAxonal regenerationTranscription 3 (STAT3) activationDorsal root ganglion neuronsTime-dependent phosphorylationProximal nerve stumpSpinal axon regenerationTranscription factorsTranscription 3Peripheral injurySTAT3 activationDRG neuronsNerve stumpInhibitor AG490Ganglion neuronsSciatic nerveGlial scarSTAT3 phosphorylation
2004
Conditioning Injury-Induced Spinal Axon Regeneration Fails in Interleukin-6 Knock-Out Mice
Cafferty WB, Gardiner NJ, Das P, Qiu J, McMahon SB, Thompson SW. Conditioning Injury-Induced Spinal Axon Regeneration Fails in Interleukin-6 Knock-Out Mice. Journal Of Neuroscience 2004, 24: 4432-4443. PMID: 15128857, PMCID: PMC6729445, DOI: 10.1523/jneurosci.2245-02.2004.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAxonsAxotomyCell DifferentiationCells, CulturedCholera ToxinDisease Models, AnimalDrug SynergismGanglia, SpinalGAP-43 ProteinInterleukin-6MaleMiceMice, KnockoutNerve Growth FactorsNerve RegenerationNeuronsRatsRats, WistarSciatic NerveSciatic NeuropathySpinal CordSpinal Cord InjuriesConceptsDorsal root gangliaInterleukin-6Sensory neuronsConditioning injuryDorsal columnsIntact dorsal root gangliaSoluble IL-6 receptorHost CNS tissueAdult sensory neuronsIL-6 upregulationDorsal column axonsDorsal column afferentsExogenous IL-6Cytokine interleukin-6IL-6 receptorGrowth-associated protein GAP43Neurite extensionConditioning lesionChondroitin sulfate proteoglycanNT-3Myelin inhibitorsDRG cellsRoot gangliaSciatic nerveInjury site
2001
Leukemia Inhibitory Factor Determines the Growth Status of Injured Adult Sensory Neurons
Cafferty W, Gardiner N, Gavazzi I, Powell J, McMahon S, Heath J, Munson J, Cohen J, Thompson S. Leukemia Inhibitory Factor Determines the Growth Status of Injured Adult Sensory Neurons. Journal Of Neuroscience 2001, 21: 7161-7170. PMID: 11549727, PMCID: PMC6762988, DOI: 10.1523/jneurosci.21-18-07161.2001.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAxotomyCalcitonin Gene-Related PeptideCell DivisionCell SurvivalCells, CulturedCytoprotectionFemaleGanglia, SpinalGrowth InhibitorsInjections, SpinalInterleukin-6Leukemia Inhibitory FactorLymphokinesMaleMiceMice, KnockoutNerve FibersNerve RegenerationNeuritesNeurons, AfferentPhenotypeRatsRats, WistarSciatic NerveTibial NerveConceptsLeukemia inhibitory factorLIF-/- miceAdult sensory neuronsSensory neuronsConditioning injuryInhibitory factorPeptidergic sensory neuronsMammalian sensory neuronsIntrinsic growth capacityExogenous leukemia inhibitory factorNerve damageReceptor antagonistNeuronsConditioning responseNeurite outgrowthInjuryGrowth statusVivoNormal regenerationStatusAntagonistGrowth capacityMice