2010
Early-Life Experience Reduces Excitation to Stress-Responsive Hypothalamic Neurons and Reprograms the Expression of Corticotropin-Releasing Hormone
Korosi A, Shanabrough M, McClelland S, Liu ZW, Borok E, Gao XB, Horvath TL, Baram TZ. Early-Life Experience Reduces Excitation to Stress-Responsive Hypothalamic Neurons and Reprograms the Expression of Corticotropin-Releasing Hormone. Journal Of Neuroscience 2010, 30: 703-713. PMID: 20071535, PMCID: PMC2822406, DOI: 10.1523/jneurosci.4214-09.2010.Peer-Reviewed Original ResearchMeSH KeywordsAge FactorsAnalysis of VarianceAnimalsAnimals, NewbornChromatin ImmunoprecipitationCorticotropin-Releasing HormoneExcitatory Amino Acid AntagonistsFemaleGene Expression Regulation, DevelopmentalMaleMaternal DeprivationMicroscopy, Electron, TransmissionNeuronsParaventricular Hypothalamic NucleusPatch-Clamp TechniquesPhysical StimulationPregnancyRatsRats, Sprague-DawleyRepressor ProteinsRNA, MessengerSodium Channel BlockersStress, PsychologicalSynaptic PotentialsTetrodotoxinVesicular Glutamate Transport Protein 2ConceptsCorticotropin-releasing hormoneNeuron-restrictive silencer factorCRH neuronsHypothalamic neuronsCRH expressionEarly life experiencesMiniature excitatory synaptic currentsHypothalamic CRH neuronsExcitatory synaptic currentsCRH gene expressionGlutamate vesicular transporterCRH gene transcriptionTranscriptional repressor neuron-restrictive silencer factorExcitatory innervationExperience-induced neuroplasticityInhibitory synapsesRat pupsExcitatory synapsesSynaptic currentsPersistent suppressionVesicular transportersCognitive functionNeuronsSilencer factorMaternal care
2008
Hypocretin/orexin and nociceptin/orphanin FQ coordinately regulate analgesia in a mouse model of stress-induced analgesia
Xie X, Wisor JP, Hara J, Crowder TL, LeWinter R, Khroyan TV, Yamanaka A, Diano S, Horvath TL, Sakurai T, Toll L, Kilduff TS. Hypocretin/orexin and nociceptin/orphanin FQ coordinately regulate analgesia in a mouse model of stress-induced analgesia. Journal Of Clinical Investigation 2008, 118: 2471-2481. PMID: 18551194, PMCID: PMC2423866, DOI: 10.1172/jci35115.Peer-Reviewed Original ResearchMeSH KeywordsAnalgesiaAnimalsAtaxin-3Behavior, AnimalBrainCalciumCytoplasmElectrophysiologyFemaleHypothalamus, PosteriorImmunohistochemistryIntracellular Signaling Peptides and ProteinsMaleMembrane PotentialsMiceMice, Inbred C57BLMice, TransgenicNarcotic AntagonistsNeuronsNeuropeptidesNociceptin ReceptorNuclear ProteinsOpioid PeptidesOrexinsPain ThresholdPresynaptic TerminalsReaction TimeReceptors, OpioidStress, PhysiologicalTetrodotoxinTranscription FactorsConceptsStress-induced analgesiaHcrt neuronsWild-type miceHypocretin/orexinNociceptin/orphanin FQMouse hypothalamic slicesCorticotropin-releasing factorPatch-clamp recordingsOrexin/ataxinPostsynaptic effectsPresynaptic releaseOrphanin FQElectron microscopic levelHypothalamic slicesSynaptic contactsHcrt-1Hcrt systemMouse modelAnalgesiaClamp recordingsPeptidergic systemsAction potentialsBrain tissueNeuronsInput resistance
2004
Rapid Rewiring of Arcuate Nucleus Feeding Circuits by Leptin
Pinto S, Roseberry AG, Liu H, Diano S, Shanabrough M, Cai X, Friedman JM, Horvath TL. Rapid Rewiring of Arcuate Nucleus Feeding Circuits by Leptin. Science 2004, 304: 110-115. PMID: 15064421, DOI: 10.1126/science.1089459.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsArcuate Nucleus of HypothalamusBody WeightEatingEvoked PotentialsExcitatory Postsynaptic PotentialsFeeding BehaviorGamma-Aminobutyric AcidGhrelinGlutamic AcidGreen Fluorescent ProteinsIn Vitro TechniquesLeptinLuminescent ProteinsMiceMice, ObeseMice, TransgenicNeuronal PlasticityNeuronsNeuropeptide YPatch-Clamp TechniquesPeptide HormonesPro-OpiomelanocortinRecombinant Fusion ProteinsSynapsesTetrodotoxinTransgenesConceptsProopiomelanocortin neuronsNeuropeptide YFat-derived hormone leptinBehavioral effectsOb/ob miceLeptin-deficient miceOb/obHypothalamic arcuate nucleusWild-type miceNumber of excitatoryArcuate nucleusLeptin effectsPostsynaptic currentsOb miceHormone leptinSynaptic densityInhibitory synapsesFood intakeNeuronal typesLeptinMiceNeuronsFeeding circuitRapid rewiringHours
1999
Hypocretin (orexin) activation and synaptic innervation of the locus coeruleus noradrenergic system
Horvath T, Peyron C, Diano S, Ivanov A, Aston‐Jones G, Kilduff T, van den Pol A. Hypocretin (orexin) activation and synaptic innervation of the locus coeruleus noradrenergic system. The Journal Of Comparative Neurology 1999, 415: 145-159. PMID: 10545156, DOI: 10.1002/(sici)1096-9861(19991213)415:2<145::aid-cne1>3.0.co;2-2.Peer-Reviewed Original ResearchMeSH KeywordsAction PotentialsAnimalsChlorocebus aethiopsFemaleHypothalamusImmunohistochemistryIntracellular Signaling Peptides and ProteinsLocus CoeruleusMacaca fascicularisMaleMicroscopy, ElectronMSH Release-Inhibiting HormoneNeuropeptidesNeurotransmitter AgentsNorepinephrineOrexinsPresynaptic TerminalsRatsRats, Sprague-DawleyTetrodotoxinTyrosine 3-MonooxygenaseConceptsLocus coeruleusSynaptic innervationNoradrenergic systemAxon terminalsTyrosine hydroxylase-immunopositive cellsAsymmetrical synaptic contactsLC-noradrenergic systemParallel electrophysiological studiesLocus coeruleus noradrenergic systemPresence of tetrodotoxinMelanin-concentrating hormoneLC neuronsAutonomic centersNoradrenergic innervationDense arborizationsExcitatory responsesHypocretin cellsSubstantia nigraSynaptic contactsHypocretin-2Lateral hypothalamusZona incertaModest depolarizationCatecholamine systemsCentral regulation