2008
Exercise-Induced Synaptogenesis in the Hippocampus Is Dependent on UCP2-Regulated Mitochondrial Adaptation
Dietrich MO, Andrews ZB, Horvath TL. Exercise-Induced Synaptogenesis in the Hippocampus Is Dependent on UCP2-Regulated Mitochondrial Adaptation. Journal Of Neuroscience 2008, 28: 10766-10771. PMID: 18923051, PMCID: PMC3865437, DOI: 10.1523/jneurosci.2744-08.2008.Peer-Reviewed Original ResearchConceptsSynaptic plasticityVoluntary exerciseEssential organellesUCP2 functionProtein-2 mRNA expressionDendritic spine synapsesBioenergetic adaptationMitochondrial metabolismMitochondrial oxygen consumptionMitochondrial numberEnergetic needsMitochondrial adaptationsMitochondrial mechanismsExercise inducesDentate gyrusStratum radiatumSpine synapsesCA1 regionGlial morphologyHippocampal formationNeuronal activityGranule cellsAction potentialsNeuronal morphologyMRNA expressionHypocretin/orexin and nociceptin/orphanin FQ coordinately regulate analgesia in a mouse model of stress-induced analgesia
Xie X, Wisor JP, Hara J, Crowder TL, LeWinter R, Khroyan TV, Yamanaka A, Diano S, Horvath TL, Sakurai T, Toll L, Kilduff TS. Hypocretin/orexin and nociceptin/orphanin FQ coordinately regulate analgesia in a mouse model of stress-induced analgesia. Journal Of Clinical Investigation 2008, 118: 2471-2481. PMID: 18551194, PMCID: PMC2423866, DOI: 10.1172/jci35115.Peer-Reviewed Original ResearchMeSH KeywordsAnalgesiaAnimalsAtaxin-3Behavior, AnimalBrainCalciumCytoplasmElectrophysiologyFemaleHypothalamus, PosteriorImmunohistochemistryIntracellular Signaling Peptides and ProteinsMaleMembrane PotentialsMiceMice, Inbred C57BLMice, TransgenicNarcotic AntagonistsNeuronsNeuropeptidesNociceptin ReceptorNuclear ProteinsOpioid PeptidesOrexinsPain ThresholdPresynaptic TerminalsReaction TimeReceptors, OpioidStress, PhysiologicalTetrodotoxinTranscription FactorsConceptsStress-induced analgesiaHcrt neuronsWild-type miceHypocretin/orexinNociceptin/orphanin FQMouse hypothalamic slicesCorticotropin-releasing factorPatch-clamp recordingsOrexin/ataxinPostsynaptic effectsPresynaptic releaseOrphanin FQElectron microscopic levelHypothalamic slicesSynaptic contactsHcrt-1Hcrt systemMouse modelAnalgesiaClamp recordingsPeptidergic systemsAction potentialsBrain tissueNeuronsInput resistance
2001
Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus
Cowley M, Smart J, Rubinstein M, Cerdán M, Diano S, Horvath T, Cone R, Low M. Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature 2001, 411: 480-484. PMID: 11373681, DOI: 10.1038/35078085.Peer-Reviewed Original ResearchMeSH KeywordsAction PotentialsAnimalsAnimals, Genetically ModifiedAnorexiaArcuate Nucleus of HypothalamusElectrophysiologyEvoked PotentialsGamma-Aminobutyric AcidGreen Fluorescent ProteinsLeptinLuminescent ProteinsMaleMiceMice, Inbred C57BLNerve NetNeural InhibitionNeuronsNeuropeptide YPro-OpiomelanocortinConceptsAnorexigenic POMC neuronsPOMC neuronsArcuate nucleusLeptin actionLeptin-deficient humansLepob/Lepob miceLeptin receptor expressionLong-term energy balanceNonspecific cation channelGABA neuronsOrexigenic neuropeptidesObese humansAdipocyte hormoneNeuropeptide YLeptin resistanceElevated leptinReceptor expressionLepob miceMelanocortin peptidesTransgenic miceLeptinAction potentialsNeuropeptide modulatorsCommon obesityElectrophysiological recordings