2015
Comprehensive Corticospinal Labeling with mu-crystallin Transgene Reveals Axon Regeneration after Spinal Cord Trauma in ngr1−/− Mice
Fink KL, Strittmatter SM, Cafferty WB. Comprehensive Corticospinal Labeling with mu-crystallin Transgene Reveals Axon Regeneration after Spinal Cord Trauma in ngr1−/− Mice. Journal Of Neuroscience 2015, 35: 15403-15418. PMID: 26586827, PMCID: PMC4649010, DOI: 10.1523/jneurosci.3165-15.2015.Peer-Reviewed Original ResearchMeSH KeywordsAmidinesAnalysis of VarianceAnimalsAxonsBiotinCrystallinsDextransDisease Models, AnimalFunctional LateralityGene Expression RegulationGlial Fibrillary Acidic ProteinGPI-Linked ProteinsLuminescent ProteinsMiceMice, Inbred C57BLMice, TransgenicMu-CrystallinsMyelin ProteinsNerve RegenerationNogo Receptor 1Pyramidal TractsReceptors, Cell SurfaceRecovery of FunctionSpinal Cord InjuriesConceptsCorticospinal tractCST axonsTransgenic miceMotor tractsDextran amineFunctional deficitsSpinal cordAxon regenerationSpinal Cord Injury StudySpontaneous axon regenerationSpinal cord traumaNogo receptor 1Permanent functional deficitsPersistent functional deficitsBilateral pyramidotomyDorsal hemisectionMidthoracic cordCord traumaMotor pathwaysAdult CNSCST regenerationInjury studiesLesion siteRegenerating fibersNeural repairIntravitreal Delivery of Human NgR-Fc Decoy Protein Regenerates Axons After Optic Nerve Crush and Protects Ganglion Cells in Glaucoma ModelsNgR-Fc Rescues Ganglion Cells in Glaucoma
Wang X, Lin J, Arzeno A, Choi JY, Boccio J, Frieden E, Bhargava A, Maynard G, Tsai JC, Strittmatter SM. Intravitreal Delivery of Human NgR-Fc Decoy Protein Regenerates Axons After Optic Nerve Crush and Protects Ganglion Cells in Glaucoma ModelsNgR-Fc Rescues Ganglion Cells in Glaucoma. Investigative Ophthalmology & Visual Science 2015, 56: 1357-1366. PMID: 25655801, PMCID: PMC4338631, DOI: 10.1167/iovs.14-15472.Peer-Reviewed Original ResearchConceptsOptic nerve crushFluro-GoldNerve crushAxonal regenerationGanglion cellsOptic nerve crush injuryRetinal ganglion cell degenerationRGC axonal regenerationNerve crush injuryDisease-modifying therapiesGanglion cell degenerationDecoy proteinMicrobead modelVitreal spaceIntravitreal treatmentRGC densityAxonal sproutingCrush injuryGlaucoma modelNeuroprotective effectsAnterior chamberControl ratsVision lossAnterograde labelingBolus administration
2014
Human NgR-Fc Decoy Protein via Lumbar Intrathecal Bolus Administration Enhances Recovery from Rat Spinal Cord Contusion
Wang X, Yigitkanli K, Kim CY, Sekine-Konno T, Wirak D, Frieden E, Bhargava A, Maynard G, Cafferty WB, Strittmatter SM. Human NgR-Fc Decoy Protein via Lumbar Intrathecal Bolus Administration Enhances Recovery from Rat Spinal Cord Contusion. Journal Of Neurotrauma 2014, 31: 1955-1966. PMID: 24964223, PMCID: PMC4245872, DOI: 10.1089/neu.2014.3355.Peer-Reviewed Original ResearchConceptsSpinal cord injuryTraumatic spinal cord injurySpinal cord contusionNeurological recoveryCord contusionRat spinal cord contusionSpinal contusion injuryLumbar intrathecal spaceLumbar spinal cordContinuous intracerebroventricular infusionRodent SCI modelsPercentage of ratsRaphespinal axonsContusion injuryAdministration regimenSCI modelContinuous infusionCord injuryIntracerebroventricular infusionIntrathecal spaceSpinal cordPreclinical modelsEffective treatmentWalking tasksClinical testingThe Nogo Receptor NgR1 Mediates Infection by Mammalian Reovirus
Konopka-Anstadt JL, Mainou BA, Sutherland DM, Sekine Y, Strittmatter SM, Dermody TS. The Nogo Receptor NgR1 Mediates Infection by Mammalian Reovirus. Cell Host & Microbe 2014, 15: 681-691. PMID: 24922571, PMCID: PMC4100558, DOI: 10.1016/j.chom.2014.05.010.Peer-Reviewed Original ResearchConceptsCentral nervous systemReceptor NgR1Reovirus infectionExpression of NgR1Primary cortical neuronsDistinct cell surface moleculesJunctional adhesion molecule ASoluble NgR1Cell surface moleculesNeurotropic virusesCortical neuronsMammalian reovirusesNonsusceptible cellsNervous systemNgR1Null miceSystemic spreadInfectionIndependent receptorsMultiple receptorsReovirus replicationInitial siteReovirus virionsNeuronsReceptors
2012
Axonal regeneration induced by blockade of glial inhibitors coupled with activation of intrinsic neuronal growth pathways
Wang X, Hasan O, Arzeno A, Benowitz LI, Cafferty WB, Strittmatter SM. Axonal regeneration induced by blockade of glial inhibitors coupled with activation of intrinsic neuronal growth pathways. Experimental Neurology 2012, 237: 55-69. PMID: 22728374, PMCID: PMC3418451, DOI: 10.1016/j.expneurol.2012.06.009.Peer-Reviewed Original ResearchConceptsRetinal ganglion cellsAxonal regenerationPharmacological approachesCrush injuryChondroitin sulfate proteoglycanInjury siteNeural repairOptic nerve crush injuryDorsal root ganglion neuronsNgr1-/- miceNerve crush injurySciatic nerve axotomySpinal cord injury sitePrimary afferent fibersEffective pharmacological approachSpinal cord injuryAdult mammalian neuronsIntrinsic growth potentialGlial inhibitorsTriple therapyNerve axotomyViral gene therapyWT miceAfferent fibersCNS injuryLimiting multiple sclerosis related axonopathy by blocking Nogo receptor and CRMP-2 phosphorylation
Petratos S, Ozturk E, Azari MF, Kenny R, Lee JY, Magee KA, Harvey AR, McDonald C, Taghian K, Moussa L, Aui P, Siatskas C, Litwak S, Fehlings MG, Strittmatter SM, Bernard CC. Limiting multiple sclerosis related axonopathy by blocking Nogo receptor and CRMP-2 phosphorylation. Brain 2012, 135: 1794-1818. PMID: 22544872, PMCID: PMC3589918, DOI: 10.1093/brain/aws100.Peer-Reviewed Original ResearchMeSH KeywordsAdultAnalysis of VarianceAnimalsAntibodiesAxonsCD3 ComplexCell Line, TumorDemyelinating DiseasesDisease Models, AnimalEncephalomyelitis, Autoimmune, ExperimentalFemaleGene Expression RegulationGlycoproteinsGPI-Linked ProteinsGreen Fluorescent ProteinsHumansImmunoprecipitationIntercellular Signaling Peptides and ProteinsMaleMiceMice, Inbred C57BLMice, KnockoutMiddle AgedMultiple SclerosisMutationMyelin ProteinsMyelin-Oligodendrocyte GlycoproteinNerve DegenerationNerve Tissue ProteinsNeuroblastomaNeurofilament ProteinsNogo Receptor 1Optic NervePeptide FragmentsPhosphorylationReceptors, Cell SurfaceRetinal Ganglion CellsSeverity of Illness IndexSilver StainingSpinal CordTau ProteinsTime FactorsTransduction, GeneticTubulinConceptsExperimental autoimmune encephalomyelitisAutoimmune encephalomyelitisMyelin oligodendrocyte glycoproteinMultiple sclerosisAxonal degenerationSpinal cordChronic active multiple sclerosis lesionsOptic nerve axonal degenerationNogo-66 receptor 1CRMP-2Axonal growth inhibitorsCollapsin response mediator protein 2Improved clinical outcomesSpinal cord neuronsRetinal ganglion cellsResponse mediator protein 2Central nervous systemViable therapeutic targetAdeno-associated viral vectorMultiple sclerosis lesionsClinical outcomesOptic nerveCord neuronsOligodendrocyte glycoproteinGanglion cells
2011
Cartilage Acidic Protein–1B (LOTUS), an Endogenous Nogo Receptor Antagonist for Axon Tract Formation
Sato Y, Iketani M, Kurihara Y, Yamaguchi M, Yamashita N, Nakamura F, Arie Y, Kawasaki T, Hirata T, Abe T, Kiyonari H, Strittmatter SM, Goshima Y, Takei K. Cartilage Acidic Protein–1B (LOTUS), an Endogenous Nogo Receptor Antagonist for Axon Tract Formation. Science 2011, 333: 769-773. PMID: 21817055, PMCID: PMC3244695, DOI: 10.1126/science.1204144.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAxonsBinding SitesCalcium-Binding ProteinsCell LineCells, CulturedGPI-Linked ProteinsGrowth ConesHumansImmunohistochemistryLigandsMiceMice, Inbred ICRMyelin ProteinsNogo ProteinsNogo Receptor 1Olfactory PathwaysProsencephalonProtein BindingReceptors, Cell SurfaceSignal TransductionConceptsTract formationNogo receptor 1Axon growth inhibitorsProtein 1BEndogenous antagonismAxon tract formationReceptor antagonistGrowth cone collapseAxonal projectionsCircuitry formationNeural circuitry formationMouse brainReceptor 1LOT formationNeural regenerationNgR1Key moleculesCone collapseMiceFluorophore-assisted light inactivationGrowth inhibitorAntagonistBrainMyelinNogoMembrane-type Matrix Metalloproteinase-3 Regulates Neuronal Responsiveness to Myelin through Nogo-66 Receptor 1 Cleavage*
Ferraro GB, Morrison CJ, Overall CM, Strittmatter SM, Fournier AE. Membrane-type Matrix Metalloproteinase-3 Regulates Neuronal Responsiveness to Myelin through Nogo-66 Receptor 1 Cleavage*. Journal Of Biological Chemistry 2011, 286: 31418-31424. PMID: 21768085, PMCID: PMC3173120, DOI: 10.1074/jbc.m111.249169.Peer-Reviewed Original ResearchConceptsMatrix metalloproteinase-3Primary neuronsMetalloproteinase-3Neuronal responsesSH-SY5Y neuroblastoma cellsMetalloproteinase-dependent mannerNeuronal responsivenessAxonal regrowthCortical neuronsNeuronal knockdownNgR1Receptor 1Neuroblastoma cellsNeuronsCell surfaceMT3-MMPMyelinSpecific metalloproteinasesGlycosylphosphatidylinositol-anchored receptorInhibitorsPhysiological consequencesCleavage fragmentsCleavage-resistant formMetalloproteinasesReceptorsMyelin associated inhibitors: A link between injury-induced and experience-dependent plasticity
Akbik F, Cafferty WB, Strittmatter SM. Myelin associated inhibitors: A link between injury-induced and experience-dependent plasticity. Experimental Neurology 2011, 235: 43-52. PMID: 21699896, PMCID: PMC3189418, DOI: 10.1016/j.expneurol.2011.06.006.Peer-Reviewed Original ResearchConceptsExperience-dependent plasticityAnatomical rearrangementsNogo-66 receptor 1Spinal cord injuryNeurologic recoveryFunctional recoveryInciting stimulusCNS injuryCord injuryAxonal regenerationAdult CNSInjury studiesAnimal modelsReceptor 1Common receptorPaired-ImmunoglobulinMyelinInhibitorsInjuryAnatomical growthCNSReceptorsWide spectrumExtracellular matrixGrowth inhibitorA Multi-domain Fragment of Nogo-A Protein Is a Potent Inhibitor of Cortical Axon Regeneration via Nogo Receptor 1*
Huebner EA, Kim BG, Duffy PJ, Brown RH, Strittmatter SM. A Multi-domain Fragment of Nogo-A Protein Is a Potent Inhibitor of Cortical Axon Regeneration via Nogo Receptor 1*. Journal Of Biological Chemistry 2011, 286: 18026-18036. PMID: 21454605, PMCID: PMC3093876, DOI: 10.1074/jbc.m110.208108.Peer-Reviewed Original ResearchConceptsMature cortical neuronsCortical neuronsNogo-66Axon regenerationReceptor 1Central nervous system injuryDorsal root ganglion neuronsNogo-66 receptor 1Expression of PirBMature cortical culturesNogo receptor 1Nervous system injuryNogo-A proteinImmunoglobulin-like receptorsChick dorsal root ganglion neuronsFunctional recoverySystem injuryGanglion neuronsCortical culturesPredominant receptorNgR1Genetic deletionPirBCell surface receptorsNeurons
2010
Nogo Receptor Deletion and Multimodal Exercise Improve Distinct Aspects of Recovery in Cervical Spinal Cord Injury
Harel NY, Song KH, Tang X, Strittmatter SM. Nogo Receptor Deletion and Multimodal Exercise Improve Distinct Aspects of Recovery in Cervical Spinal Cord Injury. Journal Of Neurotrauma 2010, 27: 2055-2066. PMID: 20809785, PMCID: PMC2978056, DOI: 10.1089/neu.2010.1491.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBehavior, AnimalExercise TherapyFemaleGene DeletionGenotypeGPI-Linked ProteinsHand StrengthImmunohistochemistryMaleMiceMice, Inbred C57BLMyelin ProteinsNeuronal PlasticityNogo Receptor 1Physical Conditioning, AnimalPostural BalanceReceptors, Cell SurfaceReproducibility of ResultsSerotoninSpinal CordSpinal Cord InjuriesWalkingConceptsSpinal cord injuryCord injuryCervical spinal cord injuryIncomplete spinal cord injuryCervical spinal injurySignificant histological differencesMultimodal exerciseExercise trainingLateral hemisectionReceptor deletionSpinal injuryLesion modelMouse modelAdult miceLesion sizeGene deletionHistological differencesNeural plasticityMild deficitsHistological analysisTraining regimenInjuryPhysical interventionsC3-C4MiceGenetic Deletion and Pharmacological Inhibition of Nogo-66 Receptor Impairs Cognitive Outcome after Traumatic Brain Injury in Mice
Hånell A, Clausen F, Björk M, Jansson K, Philipson O, Nilsson LN, Hillered L, Weinreb PH, Lee D, McIntosh TK, Gimbel DA, Strittmatter SM, Marklund N. Genetic Deletion and Pharmacological Inhibition of Nogo-66 Receptor Impairs Cognitive Outcome after Traumatic Brain Injury in Mice. Journal Of Neurotrauma 2010, 27: 1297-1309. PMID: 20486800, PMCID: PMC2942864, DOI: 10.1089/neu.2009.1255.Peer-Reviewed Original ResearchConceptsTraumatic brain injuryMossy fiber sproutingSoluble NgR1Fiber sproutingBrain injuryCortical impact injury modelEarly post-injury periodNogo-66 receptor 1Hippocampal mossy fiber sproutingBehavioral recovery processSham-injured animalsBrain-injured animalsPost-injury periodSpinal cord injuryOligodendrocyte myelin glycoproteinPharmacological neutralizationBehavioral recoveryFunctional recoveryLoss of tissueCord injuryTimm stainInjury modelMotor functionRodent modelsHistological effectsMAG and OMgp Synergize with Nogo-A to Restrict Axonal Growth and Neurological Recovery after Spinal Cord Trauma
Cafferty WB, Duffy P, Huebner E, Strittmatter SM. MAG and OMgp Synergize with Nogo-A to Restrict Axonal Growth and Neurological Recovery after Spinal Cord Trauma. Journal Of Neuroscience 2010, 30: 6825-6837. PMID: 20484625, PMCID: PMC2883258, DOI: 10.1523/jneurosci.6239-09.2010.Peer-Reviewed Original ResearchMeSH KeywordsAnalysis of VarianceAnimalsBiotinCells, CulturedDextransDisease Models, AnimalFemaleFunctional LateralityGanglia, SpinalGPI-Linked ProteinsMaleMiceMice, Inbred C57BLMice, KnockoutMutationMyelin ProteinsMyelin-Associated GlycoproteinMyelin-Oligodendrocyte GlycoproteinNerve Tissue ProteinsNeuronsNogo ProteinsPyramidal TractsReceptors, Cell SurfaceReceptors, SerotoninRecovery of FunctionSpinal Cord InjuriesConceptsAxonal growthSpinal Cord Injury StudyMutant miceGreater axonal growthGreater behavioral recoverySpinal cord traumaWild-type miceAxonal growth inhibitionHeterozygous mutant miceDeficient myelinNeurological recoveryCNS damageTriple-mutant miceBehavioral recoveryCord traumaFunctional recoveryNeurological functionMyelin inhibitorsAxonal regrowthReceptor mechanismsInjury studiesMyelin inhibitionDecoy receptorOptimal chanceMice
2008
Genetic Variants of Nogo-66 Receptor with Possible Association to Schizophrenia Block Myelin Inhibition of Axon Growth
Budel S, Padukkavidana T, Liu BP, Feng Z, Hu F, Johnson S, Lauren J, Park JH, McGee AW, Liao J, Stillman A, Kim JE, Yang BZ, Sodi S, Gelernter J, Zhao H, Hisama F, Arnsten AF, Strittmatter SM. Genetic Variants of Nogo-66 Receptor with Possible Association to Schizophrenia Block Myelin Inhibition of Axon Growth. Journal Of Neuroscience 2008, 28: 13161-13172. PMID: 19052207, PMCID: PMC2892845, DOI: 10.1523/jneurosci.3828-08.2008.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBrainChick EmbryoChlorocebus aethiopsChromosome MappingCodonCOS CellsFemaleGenetic Predisposition to DiseaseGPI-Linked ProteinsGrowth ConesGrowth InhibitorsHumansMaleMiceMice, KnockoutMutationMyelin ProteinsNerve Fibers, MyelinatedNeurogenesisNeuronal PlasticityNogo Receptor 1Organ Culture TechniquesRatsReceptors, Cell SurfaceSchizophreniaConceptsMyelin inhibitionNogo-66 receptorCase-control analysisMyelin-specific genesAxonal sproutingMyelin signalGenetic predispositionAxon inhibitionNeuronal culturesPossible associationReceptor 1Disease riskAxon growthSchizophreniaAxonal proteinsPotential endophenotypeMemory functionGenetic variantsDysfunctional proteinsInhibitionSchizophrenia susceptibilityDominant negativeProtein exhibitCandidate genesChromosome 22q11Nogo-66 Receptor Antagonist Peptide (NEP1-40) Administration Promotes Functional Recovery and Axonal Growth After Lateral Funiculus Injury in the Adult Rat
Cao Y, Shumsky JS, Sabol MA, Kushner RA, Strittmatter S, Hamers FP, Lee DH, Rabacchi SA, Murray M. Nogo-66 Receptor Antagonist Peptide (NEP1-40) Administration Promotes Functional Recovery and Axonal Growth After Lateral Funiculus Injury in the Adult Rat. Neurorehabilitation And Neural Repair 2008, 22: 262-278. PMID: 18056009, PMCID: PMC2853251, DOI: 10.1177/1545968307308550.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBehavior, AnimalDenervationEfferent PathwaysFemaleGPI-Linked ProteinsGrowth ConesMyelin ProteinsNerve RegenerationNeuronal PlasticityNogo Receptor 1Peptide FragmentsPyramidal TractsRaphe NucleiRatsRats, Sprague-DawleyReceptors, Cell SurfaceRecovery of FunctionRed NucleusSpinal Cord InjuriesSpinal Nerve RootsTreatment OutcomeWallerian DegenerationConceptsNEP1-40 groupDorsal root axonsRST axonsRubrospinal axonsRubrospinal tractAxonal growthNEP1-40 treatmentPromotes Functional RecoveryCervical spinal cordDorsal hemisectionForelimb usageNEP1-40Corticospinal axonsFunctional recoveryIntrathecal deliveryLateral funiculusSpinal cordMotor functionOutcome measuresAdult ratsLesion siteOperated controlsWhite matterGait analysisAxons
2006
Characterization of Myelin Ligand Complexes with Neuronal Nogo-66 Receptor Family Members*
Lauré;n J, Hu F, Chin J, Liao J, Airaksinen MS, Strittmatter SM. Characterization of Myelin Ligand Complexes with Neuronal Nogo-66 Receptor Family Members*. Journal Of Biological Chemistry 2006, 282: 5715-5725. PMID: 17189258, PMCID: PMC2852886, DOI: 10.1074/jbc.m609797200.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SubstitutionAnimalsAxonsCentral Nervous SystemChlorocebus aethiopsCOS CellsGPI-Linked ProteinsHumansLectinsLigandsModels, MolecularMyelin ProteinsMyelin-Associated GlycoproteinNeoplasm ProteinsNerve Tissue ProteinsNogo Receptor 1Protein BindingProtein Structure, TertiaryReceptors, Cell SurfaceRegenerationSubcutaneous Nogo Receptor Removes Brain Amyloid-β and Improves Spatial Memory in Alzheimer's Transgenic Mice
Park JH, Widi GA, Gimbel DA, Harel NY, Lee DH, Strittmatter SM. Subcutaneous Nogo Receptor Removes Brain Amyloid-β and Improves Spatial Memory in Alzheimer's Transgenic Mice. Journal Of Neuroscience 2006, 26: 13279-13286. PMID: 17182778, PMCID: PMC2856604, DOI: 10.1523/jneurosci.4504-06.2006.Peer-Reviewed Original ResearchConceptsAmyloid precursor proteinTransgenic miceAlzheimer's diseaseAbeta clearanceAbeta plaque loadAlzheimer's transgenic miceImproved spatial memoryRadial arm water mazeNogo-66 receptorEffective therapeutic approachPotential therapeutic benefitSpatial memoryAmyloid-beta peptidePlaque loadAbeta levelsBrain amyloidDisease onsetAbeta productionTherapeutic approachesNogo receptorTherapeutic benefitWater mazeInverse correlationAbetaMiceAlzheimer Precursor Protein Interaction with the Nogo-66 Receptor Reduces Amyloid-β Plaque Deposition
Park JH, Gimbel DA, GrandPre T, Lee JK, Kim JE, Li W, Lee DH, Strittmatter SM. Alzheimer Precursor Protein Interaction with the Nogo-66 Receptor Reduces Amyloid-β Plaque Deposition. Journal Of Neuroscience 2006, 26: 1386-1395. PMID: 16452662, PMCID: PMC2846286, DOI: 10.1523/jneurosci.3291-05.2006.Peer-Reviewed Original ResearchConceptsAmyloid precursor proteinAlzheimer's diseaseAbeta levelsDystrophic neuritesPlaque depositionAmyloid-β plaque depositionCourse of ADAbeta plaque depositionTransgenic AD modelBrain Abeta levelsAD brain samplesAdult CNS axonsAxonal sprouting responseNgR expressionAbeta depositsAxonal dysfunctionPathophysiologic hypothesesSecretase processingTraumatic injuryAbeta productionDisease processAD modelBrain samplesCNS axonsPlaque depositsSelective temporal and regional alterations of Nogo-A and small proline-rich repeat protein 1A (SPRR1A) but not Nogo-66 receptor (NgR) occur following traumatic brain injury in the rat
Marklund N, Fulp CT, Shimizu S, Puri R, McMillan A, Strittmatter SM, McIntosh TK. Selective temporal and regional alterations of Nogo-A and small proline-rich repeat protein 1A (SPRR1A) but not Nogo-66 receptor (NgR) occur following traumatic brain injury in the rat. Experimental Neurology 2006, 197: 70-83. PMID: 16321384, PMCID: PMC2849132, DOI: 10.1016/j.expneurol.2005.08.029.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBlotting, WesternBrainBrain InjuriesCell CountCornified Envelope Proline-Rich ProteinsDensitometryFunctional LateralityGPI-Linked ProteinsHippocampusImmunohistochemistryMaleMembrane ProteinsMicrotubule-Associated ProteinsMyelin ProteinsNogo ProteinsNogo Receptor 1OligodendrogliaRatsRats, Sprague-DawleyReceptors, Cell SurfaceThalamusConceptsTraumatic brain injurySmall proline-rich repeat protein 1ANogo-66 receptorBrain injuryIpsilateral cortexReticular thalamusNeuN cellsLateral fluid percussion brain injuryTraumatic central nervous system injuryFluid percussion brain injuryAxonal outgrowthCentral nervous system injuryIpsilateral external capsuleOligodendrocyte marker RIPNeuN-positive cellsNeuronal marker NeuNExpression of NogoNervous system injuryWhite matter tractsImportant brain regionsNgR expressionPoor regenerative capacitySPRR1A expressionWestern blot analysisSystem injury
2005
Experience-Driven Plasticity of Visual Cortex Limited by Myelin and Nogo Receptor
McGee AW, Yang Y, Fischer QS, Daw NW, Strittmatter SM. Experience-Driven Plasticity of Visual Cortex Limited by Myelin and Nogo Receptor. Science 2005, 309: 2222-2226. PMID: 16195464, PMCID: PMC2856689, DOI: 10.1126/science.1114362.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsChondroitin Sulfate ProteoglycansDarknessDominance, OcularElectrophysiologyGamma-Aminobutyric AcidGene TargetingGPI-Linked ProteinsMiceMice, Inbred C57BLMutationMyelin Basic ProteinMyelin ProteinsMyelin SheathMyelin-Associated GlycoproteinNeuritesNeuronal PlasticityNeuronsNogo ProteinsNogo Receptor 1Photic StimulationReceptors, Cell SurfaceSignal TransductionVisual CortexConceptsOcular dominanceOcular dominance plasticityNogo-66 receptorExperience-dependent plasticityPostnatal critical periodCritical periodFunctional recoveryAxonal regenerationMonocular deprivationNogo receptorDays postnatalVisual cortexNeural circuitryPathological traumaJuvenile ageMyelinReceptorsNGRPlasticityPostnatalCortexOMgpTraumaNogoCessation