2021
A neuronal ensemble encoding adaptive choice during sensory conflict in Drosophila
Sareen PF, McCurdy LY, Nitabach MN. A neuronal ensemble encoding adaptive choice during sensory conflict in Drosophila. Nature Communications 2021, 12: 4131. PMID: 34226544, PMCID: PMC8257655, DOI: 10.1038/s41467-021-24423-y.Peer-Reviewed Original Research
2017
Genetic and neuronal mechanisms governing the sex-specific interaction between sleep and sexual behaviors in Drosophila
Chen D, Sitaraman D, Chen N, Jin X, Han C, Chen J, Sun M, Baker BS, Nitabach MN, Pan Y. Genetic and neuronal mechanisms governing the sex-specific interaction between sleep and sexual behaviors in Drosophila. Nature Communications 2017, 8: 154. PMID: 28754889, PMCID: PMC5533705, DOI: 10.1038/s41467-017-00087-5.Peer-Reviewed Original ResearchMembrane Currents, Gene Expression, and Circadian Clocks
Allen CN, Nitabach MN, Colwell CS. Membrane Currents, Gene Expression, and Circadian Clocks. Cold Spring Harbor Perspectives In Biology 2017, 9: a027714. PMID: 28246182, PMCID: PMC5411696, DOI: 10.1101/cshperspect.a027714.Peer-Reviewed Original ResearchConceptsCircadian clockGene ClockMembrane electrical activityCyclic adenosine monophosphateCircadian clock neuronsCircadian outputClock neuronsGenetic clockGene expressionCircadian oscillatorIntracellular CaAdenosine monophosphateFeedback loopPathwayClockHuman healthAction potential firing patternsMammalianActivityAction potential firingNightly reductionsMultiple typesExpressionMembrane currentsCircadian pattern
2016
Neural Architecture of Hunger-Dependent Multisensory Decision Making in C. elegans
Ghosh DD, Sanders T, Hong S, McCurdy LY, Chase DL, Cohen N, Koelle MR, Nitabach MN. Neural Architecture of Hunger-Dependent Multisensory Decision Making in C. elegans. Neuron 2016, 92: 1049-1062. PMID: 27866800, PMCID: PMC5147516, DOI: 10.1016/j.neuron.2016.10.030.Peer-Reviewed Original Research
2015
Propagation of Homeostatic Sleep Signals by Segregated Synaptic Microcircuits of the Drosophila Mushroom Body
Sitaraman D, Aso Y, Jin X, Chen N, Felix M, Rubin GM, Nitabach MN. Propagation of Homeostatic Sleep Signals by Segregated Synaptic Microcircuits of the Drosophila Mushroom Body. Current Biology 2015, 25: 2915-2927. PMID: 26455303, PMCID: PMC4654684, DOI: 10.1016/j.cub.2015.09.017.Peer-Reviewed Original ResearchConceptsSynaptic microcircuitsDrosophila mushroom bodyKenyon cellsMushroom bodiesMB neuronsControl of sleepHomeostatic rebound sleepHomeostatic sleep regulationIncreases sleepRebound sleepSleep regulationMBONsSleep deprivationNeuron classesSleepSleep informationMemory centerSpecific functional connectionsFunctional connectionsNeuronsPhysiological approachDifferent populationsMicrocircuits
2014
Calcitonin Gene-Related Peptide Neurons Mediate Sleep-Specific Circadian Output in Drosophila
Kunst M, Hughes ME, Raccuglia D, Felix M, Li M, Barnett G, Duah J, Nitabach MN. Calcitonin Gene-Related Peptide Neurons Mediate Sleep-Specific Circadian Output in Drosophila. Current Biology 2014, 24: 2652-2664. PMID: 25455031, PMCID: PMC4255360, DOI: 10.1016/j.cub.2014.09.077.Peer-Reviewed Original ResearchConceptsPigment-dispersing factorNeuropeptide calcitonin gene-related peptideCalcitonin gene-related peptideGene-related peptidePDF receptorClock neuronsCircadian clock neuronsDistinct neuronal pathwaysNeuropeptide pigment-dispersing factorDorsal clock neuronsAmount of sleepHomeostatic sleep driveNeurons actsCalcitonin geneNeuronal pathwaysTiming of sleepSleepMental healthSleep driveReceptorsNovel roleCircadian rhythmDH31NeuronsLocomotor rhythmMushroom body output neurons encode valence and guide memory-based action selection in Drosophila
Aso Y, Sitaraman D, Ichinose T, Kaun KR, Vogt K, Belliart-Guérin G, Plaçais PY, Robie AA, Yamagata N, Schnaitmann C, Rowell WJ, Johnston RM, Ngo TT, Chen N, Korff W, Nitabach MN, Heberlein U, Preat T, Branson KM, Tanimoto H, Rubin GM. Mushroom body output neurons encode valence and guide memory-based action selection in Drosophila. ELife 2014, 3: e04580. PMID: 25535794, PMCID: PMC4273436, DOI: 10.7554/elife.04580.Peer-Reviewed Original Research
2013
Genetically Targeted Optical Electrophysiology in Intact Neural Circuits
Cao G, Platisa J, Pieribone VA, Raccuglia D, Kunst M, Nitabach MN. Genetically Targeted Optical Electrophysiology in Intact Neural Circuits. Cell 2013, 154: 904-913. PMID: 23932121, PMCID: PMC3874294, DOI: 10.1016/j.cell.2013.07.027.Peer-Reviewed Original ResearchConceptsIntact neural circuitsNeural circuitsIntact brain tissueMembrane potentialNeuronal information processingNervous systemAction potentialsBrain tissueNeuronsStudy of intracellularElectrical activityKey cellular parametersMultiple neuronsElectrical eventsSubthreshold eventsNeurite branchesOptical electrophysiologyReliable recordingCellular parametersVoltage indicatorsFluorescent voltage indicatorsBrainPigment-Dispersing Factor Modulates Pheromone Production in Clock Cells that Influence Mating in Drosophila
Krupp JJ, Billeter JC, Wong A, Choi C, Nitabach MN, Levine JD. Pigment-Dispersing Factor Modulates Pheromone Production in Clock Cells that Influence Mating in Drosophila. Neuron 2013, 79: 54-68. PMID: 23849197, PMCID: PMC3955580, DOI: 10.1016/j.neuron.2013.05.019.Peer-Reviewed Original ResearchConceptsPigment Dispersing FactorClock cellsMating behaviorPheromone productionNeuropeptide Pigment Dispersing FactorPeripheral clock cellsMale sex pheromoneSex pheromone productionMolecular rhythmsPhysiological outputsNeuropeptide signalingBehavioral rhythmsCircadian mechanismsSex-specific differencesDrosophilaSex pheromoneCircadian entrainmentOenocytesCircadian systemPheromonePathwayNeuroendocrine pathwaysActivity rhythmsCellsBehavioral processes
2012
Peptide Neuromodulation in Invertebrate Model Systems
Taghert PH, Nitabach MN. Peptide Neuromodulation in Invertebrate Model Systems. Neuron 2012, 76: 82-97. PMID: 23040808, PMCID: PMC3466441, DOI: 10.1016/j.neuron.2012.08.035.Peer-Reviewed Original ResearchConceptsInvertebrate model systemsGenetic model organism Drosophila melanogasterModel organism Drosophila melanogasterAdaptive animal behaviourModel systemCaenorhabditis elegansDrosophila melanogasterPhysiological processesReproductive behaviorSophisticated behavioral paradigmsPhysiological approachAnimal behaviorCircadian rhythmNeuropeptide modulationMelanogasterElegansInsectsNeural circuitsCircuit functionCrustaceansNematodesMollusksPeptide neuromodulationCentral pattern generationNeuropeptidesAutoreceptor Control of Peptide/Neurotransmitter Corelease from PDF Neurons Determines Allocation of Circadian Activity in Drosophila
Choi C, Cao G, Tanenhaus AK, McCarthy EV, Jung M, Schleyer W, Shang Y, Rosbash M, Yin JC, Nitabach MN. Autoreceptor Control of Peptide/Neurotransmitter Corelease from PDF Neurons Determines Allocation of Circadian Activity in Drosophila. Cell Reports 2012, 2: 332-344. PMID: 22938867, PMCID: PMC3432947, DOI: 10.1016/j.celrep.2012.06.021.Peer-Reviewed Original Research
2011
Insect circadian clock outputs
Helfrich-Förster C, Nitabach MN, Holmes TC. Insect circadian clock outputs. Essays In Biochemistry 2011, 49: 87-101. PMID: 21819386, DOI: 10.1042/bse0490087.Peer-Reviewed Original ResearchConceptsClock neuronsDaily rhythmsCircadian clock outputBrain clockCellular clocksDrosophila fliesCircadian timekeeping systemCircadian outputEnvironmental cuesClock outputMigratory locustInsectsTimekeeping systemCircadian rhythmicitySubstantial similarityClockImpressive varietyButterfliesLocal environmentFliesClock circuitEntire lifeLocustTimekeeperPhysiologySynchronized Bilateral Synaptic Inputs to Drosophila melanogaster Neuropeptidergic Rest/Arousal Neurons
McCarthy EV, Wu Y, deCarvalho T, Brandt C, Cao G, Nitabach MN. Synchronized Bilateral Synaptic Inputs to Drosophila melanogaster Neuropeptidergic Rest/Arousal Neurons. Journal Of Neuroscience 2011, 31: 8181-8193. PMID: 21632940, PMCID: PMC3125135, DOI: 10.1523/jneurosci.2017-10.2011.Peer-Reviewed Original ResearchConceptsSynaptic inputsWhole-cell patch-clamp recordingsNicotinic acetylcholine receptor antagonistDual whole-cell patch-clamp recordingsAcetylcholine receptor antagonistNicotinic ACh receptorsSynchronous synaptic inputPatch-clamp recordingsWake-promoting neuronsLarge ventrolateral neuronsArousal neuronsSodium blockersGABAergic inputsCholinergic inputReceptor antagonistSynaptic circuitryACh receptorsNeurotransmitter receptorsBilateral inputSynaptic connectionsΑ-bungarotoxinVentrolateral neuronsContralateral pairsFiring patternsNeurons