2021
Retinal waves prime visual motion detection by simulating future optic flow
Ge X, Zhang K, Gribizis A, Hamodi AS, Sabino AM, Crair MC. Retinal waves prime visual motion detection by simulating future optic flow. Science 2021, 373 PMID: 34437090, PMCID: PMC8841103, DOI: 10.1126/science.abd0830.Peer-Reviewed Original ResearchConceptsEye-specific segregationSpontaneous retinal wavesVisual response propertiesSpontaneous retinal activityDirection-selective responsesSuperior colliculus neuronsOptic flow patternsRetinal wavesRetinal activityColliculus neuronsRetinal circuitsSpontaneous activityChronic disruptionVisual motion detectionEye openingTransient windowResponse propertiesOptic flowSensory experienceNeurons
2017
Reciprocal Connections Between Cortex and Thalamus Contribute to Retinal Axon Targeting to Dorsal Lateral Geniculate Nucleus
Diao Y, Cui L, Chen Y, Burbridge TJ, Han W, Wirth B, Sestan N, Crair MC, Zhang J. Reciprocal Connections Between Cortex and Thalamus Contribute to Retinal Axon Targeting to Dorsal Lateral Geniculate Nucleus. Cerebral Cortex 2017, 28: 1168-1182. PMID: 28334242, PMCID: PMC6059179, DOI: 10.1093/cercor/bhx028.Peer-Reviewed Original ResearchMeSH KeywordsAction PotentialsAnimalsAnimals, NewbornAxonsCalciumCholera ToxinDNA-Binding ProteinsEmbryo, MammalianExcitatory Amino Acid AgonistsFeeding BehaviorGene Expression Regulation, DevelopmentalGeniculate BodiesGreen Fluorescent ProteinsHomeodomain ProteinsMiceMice, TransgenicNerve Tissue ProteinsRetinaSerine-Arginine Splicing FactorsSuperior ColliculiTranscription FactorsVisual CortexVisual PathwaysConceptsDorsal lateral geniculate nucleusLateral geniculate nucleusVentral lateral geniculate nucleusGeniculate nucleusRetinal projectionsReciprocal connectionsSuperior colliculusConditional knockoutVivo electrophysiology experimentsAbnormal retinal projectionsPrimary visual cortexDLGN neuronsCorticothalamic inputsControl miceThalamocortical tractV1 lesionsThalamus contributeRetinal innervationThalamocortical projectionsCKO miceMouse modelRetinal inputVisual cortexVisual circuitsAxon targeting
2016
Retinal Wave Patterns Are Governed by Mutual Excitation among Starburst Amacrine Cells and Drive the Refinement and Maintenance of Visual Circuits
Xu HP, Burbridge TJ, Ye M, Chen M, Ge X, Zhou ZJ, Crair MC. Retinal Wave Patterns Are Governed by Mutual Excitation among Starburst Amacrine Cells and Drive the Refinement and Maintenance of Visual Circuits. Journal Of Neuroscience 2016, 36: 3871-3886. PMID: 27030771, PMCID: PMC4812142, DOI: 10.1523/jneurosci.3549-15.2016.Peer-Reviewed Original ResearchMeSH KeywordsAction PotentialsAge FactorsAmacrine CellsAnimalsAnimals, NewbornCalciumCholera ToxinCholine O-AcetyltransferaseCholinergic AgentsGene Expression Regulation, DevelopmentalGreen Fluorescent ProteinsIn Vitro TechniquesMiceMice, TransgenicPatch-Clamp TechniquesReceptors, NicotinicRetinaRetinal Ganglion CellsVesicular Glutamate Transport Protein 1Visual PathwaysConceptsEye-specific segregationVisual circuit developmentStarburst amacrine cellsStage III retinal wavesRetinal ganglion cellsRetinal wavesAmacrine cellsGlutamatergic wavesGanglion cellsSpontaneous activityVisual circuitsStage IICircuit developmentHigher-order visual areasNicotinic acetylcholine receptorsRetinal cell typesMammalian visual systemAcetylcholine receptorsΒ2-nAChRsVisual areasPatterned activityPatterning of activityΒ2 subunitCell typesCells
2014
Visual Circuit Development Requires Patterned Activity Mediated by Retinal Acetylcholine Receptors
Burbridge TJ, Xu HP, Ackman JB, Ge X, Zhang Y, Ye MJ, Zhou ZJ, Xu J, Contractor A, Crair MC. Visual Circuit Development Requires Patterned Activity Mediated by Retinal Acetylcholine Receptors. Neuron 2014, 84: 1049-1064. PMID: 25466916, PMCID: PMC4258148, DOI: 10.1016/j.neuron.2014.10.051.Peer-Reviewed Original ResearchMeSH KeywordsAction PotentialsAge FactorsAnalysis of VarianceAnimalsAnimals, NewbornCalciumCyclic AMPCyclic GMPCyclooxygenase InhibitorsEye ProteinsFunctional LateralityHomeodomain ProteinsIn Vitro TechniquesMeclofenamic AcidMiceMice, TransgenicPaired Box Transcription FactorsPAX6 Transcription FactorReceptors, NicotinicRepressor ProteinsRetinaRetinal Ganglion CellsRNA, MessengerVisual PathwaysConceptsRetinal wavesCircuit refinementNervous systemNeural circuitsVisual circuit developmentSpontaneous retinal activityRetinal activityRetinorecipient regionsSpontaneous activityAcetylcholine receptorsPharmacological manipulationVisual circuitsSynaptic connectionsVertebrate nervous systemNeural activityOnset of sensationAltered patternCircuit developmentSensory systemsCausal linkEarly developmentActivityBrainReceptorsStructural organization and function of mouse photoreceptor ribbon synapses involve the immunoglobulin protein synaptic cell adhesion molecule 1
Ribic A, Liu X, Crair MC, Biederer T. Structural organization and function of mouse photoreceptor ribbon synapses involve the immunoglobulin protein synaptic cell adhesion molecule 1. The Journal Of Comparative Neurology 2014, 522: 900-920. PMID: 23982969, PMCID: PMC3947154, DOI: 10.1002/cne.23452.Peer-Reviewed Original ResearchMeSH KeywordsAlcohol OxidoreductasesAnalysis of VarianceAnimalsAnimals, NewbornCell Adhesion Molecule-1Cell Adhesion MoleculesCo-Repressor ProteinsDNA-Binding ProteinsElectroretinographyFemaleGene Expression Regulation, DevelopmentalImmunoglobulinsMaleMiceMice, Inbred C57BLMice, KnockoutMicroscopy, ImmunoelectronNerve Tissue ProteinsPhosphoproteinsReceptors, Metabotropic GlutamateRetinaRetinal Rod Photoreceptor CellsSynapsesVesicular Glutamate Transport Protein 1ConceptsCell adhesion molecule-1Adhesion molecule-1Ribbon synapsesKO retinasSynaptic cell adhesion molecule 1Molecule-1Mouse photoreceptor ribbon synapsesInner retinal layersPhotoreceptor ribbon synapsesRod visual pathwayEarly postnatal stagesPlexiform layerKO micePhotoreceptor synapsesSynaptic organizationExcitatory synapsesQuantitative ultrastructural analysisRetinal layersKnockout miceOuter nuclearVisual pathwaySynapse developmentElectroretinogram recordingsPostnatal stagesAdhesion molecules
2012
Retinal waves coordinate patterned activity throughout the developing visual system
Ackman JB, Burbridge TJ, Crair MC. Retinal waves coordinate patterned activity throughout the developing visual system. Nature 2012, 490: 219-225. PMID: 23060192, PMCID: PMC3962269, DOI: 10.1038/nature11529.Peer-Reviewed Original ResearchConceptsActivity-dependent developmentSpontaneous retinal activityRetinal wavesRetinal activityEntire visual systemPatterned activitySecondary visual areasPrimary visual cortexOnset of visionCholinergic neurotransmissionNeonatal miceNeuronal activitySpontaneous activityNervous systemVisual cortexVertebrate nervous systemVisual areasVisual systemVisual fieldGenetic factorsEye openingFunctional developmentOnsetActivityNeurotransmissionSynapse maturation is enhanced in the binocular region of the retinocollicular map prior to eye opening
Furman M, Crair MC. Synapse maturation is enhanced in the binocular region of the retinocollicular map prior to eye opening. Journal Of Neurophysiology 2012, 107: 3200-3216. PMID: 22402661, PMCID: PMC3774562, DOI: 10.1152/jn.00943.2011.Peer-Reviewed Original ResearchConceptsSuperior colliculusLateral superior colliculusMedial superior colliculusEye openingP6-7Synaptic strengthBinocular interactionEye-specific segregationPatch-clamp recordingsRetinocollicular synapsesIpsilateral eyeNeonatal miceSlice preparationSynaptic basisMonocular enucleationDendritic arborsSynapse maturationTarget neuronsRetinal axonsDendritic branchingRetinocollicular mapSynaptic connectivityPostsynaptic partnersBinocular competitionSynapse development
2011
Visual map development depends on the temporal pattern of binocular activity in mice
Zhang J, Ackman JB, Xu HP, Crair MC. Visual map development depends on the temporal pattern of binocular activity in mice. Nature Neuroscience 2011, 15: 298-307. PMID: 22179110, PMCID: PMC3267873, DOI: 10.1038/nn.3007.Peer-Reviewed Original ResearchMeSH KeywordsAction PotentialsAnimalsAnimals, NewbornBrain MappingCalciumChannelrhodopsinsCritical Period, PsychologicalFunctional LateralityIn Vitro TechniquesLightLuminescent ProteinsMiceMice, Inbred C57BLMice, TransgenicNeuronal PlasticityPatch-Clamp TechniquesReceptors, NicotinicRetinaRetinal Ganglion CellsSuperior ColliculiTime FactorsVision, BinocularVisual PathwaysConceptsDorsal lateral geniculate nucleusEye-specific segregationSpontaneous retinal wavesLateral geniculate nucleusPrimary visual cortexMouse visual systemBinocular activityRetinal wavesGeniculate nucleusCircuit refinementSuperior colliculusSpecific temporal featuresVisual cortexBursts of activityDefinitive evidenceVisual systemColliculusBinocularityCortexMiceActivityDevelopment of Single Retinofugal Axon Arbors in Normal and β2 Knock-Out Mice
Dhande OS, Hua EW, Guh E, Yeh J, Bhatt S, Zhang Y, Ruthazer ES, Feller MB, Crair MC. Development of Single Retinofugal Axon Arbors in Normal and β2 Knock-Out Mice. Journal Of Neuroscience 2011, 31: 3384-3399. PMID: 21368050, PMCID: PMC3060716, DOI: 10.1523/jneurosci.4899-10.2011.Peer-Reviewed Original ResearchConceptsDorsal lateral geniculate nucleusRetinal ganglion cellsSuperior colliculusAxon arborsRetinotopic refinementEye-specific segregationReceptor mutant miceLateral geniculate nucleusActivity-dependent mechanismsNormal developmentWT miceRGC axonsRetinal wavesGanglion cellsGeniculate nucleusMutant miceRole of activityMiceSpecific cuesArborsSparse branchesSame ageLabeling techniqueMaturationDevelopmental period
2008
Bone Morphogenetic Proteins, Eye Patterning, and Retinocollicular Map Formation in the Mouse
Plas DT, Dhande OS, Lopez JE, Murali D, Thaller C, Henkemeyer M, Furuta Y, Overbeek P, Crair MC. Bone Morphogenetic Proteins, Eye Patterning, and Retinocollicular Map Formation in the Mouse. Journal Of Neuroscience 2008, 28: 7057-7067. PMID: 18614674, PMCID: PMC2667968, DOI: 10.1523/jneurosci.3598-06.2008.Peer-Reviewed Original ResearchConceptsLateral geniculate nucleusSuperior colliculusOptic tractRetinotopic map formationRetinal ganglion cell axonsBone morphogenetic proteinCentral brain targetsRetinocollicular map formationGanglion cell axonsMap formationWild-type miceStrains of miceAxon behaviorEarly eye formationAxon orderRetinal cell fateOptic chiasmRGC axonsBrain targetsGeniculate nucleusCell axonsPotential downstream effectorsAxon sortingMorphogenetic proteinsMiceState-Dependent Bidirectional Modification of Somatic Inhibition in Neocortical Pyramidal Cells
Kurotani T, Yamada K, Yoshimura Y, Crair MC, Komatsu Y. State-Dependent Bidirectional Modification of Somatic Inhibition in Neocortical Pyramidal Cells. Neuron 2008, 57: 905-916. PMID: 18367091, PMCID: PMC2880402, DOI: 10.1016/j.neuron.2008.01.030.Peer-Reviewed Original ResearchMeSH Keywords2-Amino-5-phosphonovalerateAction PotentialsAnimalsAnimals, NewbornBicucullineDendritesDose-Response Relationship, DrugDose-Response Relationship, RadiationElectric StimulationExcitatory Amino Acid AntagonistsGABA AntagonistsGamma-Aminobutyric AcidInhibitory Postsynaptic PotentialsNeural InhibitionPatch-Clamp TechniquesPyramidal CellsQuinoxalinesRatsRats, Sprague-DawleySpider VenomsVisual CortexConceptsL-type Ca2Slow-wave sleepSomatic inhibitionPyramidal neuronsLayer 5 pyramidal neuronsBidirectional modificationSlow membrane oscillationsRat visual cortexCortical pyramidal neuronsR-type Ca2Neocortical pyramidal cellsBehavioral statesNeuron responsivenessPyramidal cellsDepolarized phaseRepetitive firingVisual cortexReceptor exocytosisChannel activationInhibitionPotentiationNeuronsSleepMembrane oscillationsDepressionRetinocollicular Synapse Maturation and Plasticity Are Regulated by Correlated Retinal Waves
Shah RD, Crair MC. Retinocollicular Synapse Maturation and Plasticity Are Regulated by Correlated Retinal Waves. Journal Of Neuroscience 2008, 28: 292-303. PMID: 18171946, PMCID: PMC6671137, DOI: 10.1523/jneurosci.4276-07.2008.Peer-Reviewed Original ResearchMeSH KeywordsAge FactorsAlpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic AcidAnimalsAnimals, NewbornBehavior, AnimalDose-Response Relationship, RadiationElectric StimulationExcitatory Amino Acid AntagonistsIn Vitro TechniquesMiceMice, KnockoutN-MethylaspartateNeuronal PlasticityPatch-Clamp TechniquesQuinoxalinesReceptors, NicotinicRetinaSuperior ColliculiSynapsesSynaptic TransmissionVisual PathwaysConceptsFirst postnatal weekRetinal wavesPostnatal weekSynapse maturationAMPA/NMDA ratioRetinotopic map refinementSpontaneous retinal wavesNicotinic ACh receptorsSecond postnatal weekRetinocollicular synapsesSynapses decreasesPattern of activationNMDA ratioSynaptic strengtheningACh receptorsQuantal amplitudeRetinotopic map formationSuperior colliculusControl synapsesSynaptic changesCoincident activityPlasticity protocolsFirst weekBeta2 subunitWeeks
2007
Developmental Homeostasis of Mouse Retinocollicular Synapses
Chandrasekaran AR, Shah RD, Crair MC. Developmental Homeostasis of Mouse Retinocollicular Synapses. Journal Of Neuroscience 2007, 27: 1746-1755. PMID: 17301182, PMCID: PMC6673732, DOI: 10.1523/jneurosci.4383-06.2007.Peer-Reviewed Original ResearchMeSH KeywordsAlpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic AcidAnimalsAnimals, NewbornBrain MappingExcitatory Amino Acid AgonistsHomeostasisMembrane PotentialsMiceMice, Inbred C57BLMice, KnockoutModels, BiologicalN-MethylaspartateNeuronsReceptors, NicotinicRetinaSuperior ColliculiSynapsesVisual CortexVisual PathwaysConceptsRetinal wavesBeta2-/- miceSpontaneous retinal wavesRetinal ganglion cellsWild-type miceActivity-dependent competitionFirst postnatal weekTotal integrated responseLarge retinal areasTotal synaptic inputNeuronal receptive fieldsReceptive fieldsGanglion cellsPerturbation of activitiesSynaptic transmissionPostnatal weekResponse homeostasisSynaptic inputsRetinal areaRetinal inputSuperior colliculusStrong synapsesVisual cortexMutant miceRetinotopic mapping
2006
Barrel Map Development Relies on Protein Kinase A Regulatory Subunit IIβ-Mediated cAMP Signaling
Inan M, Lu HC, Albright MJ, She WC, Crair MC. Barrel Map Development Relies on Protein Kinase A Regulatory Subunit IIβ-Mediated cAMP Signaling. Journal Of Neuroscience 2006, 26: 4338-4349. PMID: 16624954, PMCID: PMC6674004, DOI: 10.1523/jneurosci.3745-05.2006.Peer-Reviewed Original ResearchConceptsBarrel map formationLayer IV neuronsActivity-dependent developmentAMPA receptor functionCAMP/PKA-dependent pathwayLong-term potentiationThalamocortical synapsesThalamocortical afferentsTC synapsesThalamocortical synapseBarrel cortexPKA targetsBarrel patternCortical developmentPKA-dependent pathwayBrain circuitryPostsynaptic processesSynapse formationReceptor functionCAMP-dependent protein kinaseHebbian mechanismsDevelopmental increaseMiceSynapsesActivity-dependent modelsRole of Efficient Neurotransmitter Release in Barrel Map Development
Lu HC, Butts DA, Kaeser PS, She WC, Janz R, Crair MC. Role of Efficient Neurotransmitter Release in Barrel Map Development. Journal Of Neuroscience 2006, 26: 2692-2703. PMID: 16525048, PMCID: PMC6675166, DOI: 10.1523/jneurosci.3956-05.2006.Peer-Reviewed Original ResearchMeSH KeywordsAdenylyl CyclasesAlpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic AcidAnimalsAnimals, NewbornBlotting, WesternBrain MappingCalciumDizocilpine MaleateDose-Response Relationship, DrugDrug InteractionsElectric StimulationExcitatory Amino Acid AgonistsExcitatory Amino Acid AntagonistsExcitatory Postsynaptic PotentialsGene Expression Regulation, DevelopmentalGTP-Binding ProteinsIn Vitro TechniquesMiceMice, Inbred C57BLMice, KnockoutMice, Mutant StrainsModels, NeurologicalNeural PathwaysNeuronal PlasticityNeurotransmitter AgentsN-MethylaspartatePatch-Clamp TechniquesSomatosensory CortexSynapsinsThalamusTime FactorsConceptsThalamocortical afferentsEfficient neurotransmitter releaseNeurotransmitter releaseBarrelless miceActivity-dependent processesNeuronal circuit formationAdenylyl cyclase IBarrel mapSynaptic transmissionPresynaptic terminalsPresynaptic functionCircuit formationCortical mapsMutant miceMiceNeuronal modulesRelease efficacyEfficient synaptic transmissionActive zone proteinsZone proteinEfficacyMap developmentRIM proteinsAC1 functionRelease
2005
Pretarget sorting of retinocollicular axons in the mouse
Plas DT, Lopez JE, Crair MC. Pretarget sorting of retinocollicular axons in the mouse. The Journal Of Comparative Neurology 2005, 491: 305-319. PMID: 16175549, PMCID: PMC2716708, DOI: 10.1002/cne.20694.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnimals, NewbornAxonsImaging, Three-DimensionalMiceMice, Inbred C57BLOptic NerveRetinaSuperior ColliculiVisual PathwaysConceptsRetinotopic orderOptic tractRetinotectal mapRetinal ganglion cell axonsGanglion cell axonsWild-type miceAxon orderRetinocollicular axonsMouse genetic modelsCell axonsTectal mapMouse modelRetinal axonsOptic tectumSubsequent tractsAxonsTarget cellsTractMiceVertebrate visual systemTectumRetinaRoger SperryGenetic modelsLipophilic dye
2003
Adenylyl cyclase I regulates AMPA receptor trafficking during mouse cortical 'barrel' map development
Lu HC, She WC, Plas DT, Neumann PE, Janz R, Crair MC. Adenylyl cyclase I regulates AMPA receptor trafficking during mouse cortical 'barrel' map development. Nature Neuroscience 2003, 6: 939-947. PMID: 12897788, DOI: 10.1038/nn1106.Peer-Reviewed Original ResearchConceptsLong-term depressionLong-term potentiationAMPA receptor traffickingThalamocortical synapsesBarrelless miceBarrel map formationSynaptic AMPAR traffickingAMPAR subunit GluR1Activity-dependent mechanismsReceptor traffickingAC1 activityFunctional AMPARsSurface GluR1Thalamocortical afferentsMap formationAdenylyl cyclase IBarrel mapSubunit GluR1Cortical map formationAMPAR traffickingProtein kinase A (PKA) activitySynapsesAdenylyl cyclaseMiceImmature state
2000
Emergence of ocular dominance columns in cat visual cortex by 2 weeks of age
Crair M, Horton J, Antonini A, Stryker M. Emergence of ocular dominance columns in cat visual cortex by 2 weeks of age. The Journal Of Comparative Neurology 2000, 430: 235-249. PMID: 11135259, PMCID: PMC2412906, DOI: 10.1002/1096-9861(20010205)430:2<235::aid-cne1028>3.0.co;2-p.Peer-Reviewed Original ResearchConceptsOcular dominance columnsCat visual cortexOcular dominance column formationWeeks of ageGeniculocortical projectionsGeniculocortical afferentsVisual cortexGeniculocortical afferent segregationPostnatal day 14Lateral geniculate nucleus inputsArea of cortexPrevious anatomic studiesRetrograde labelingOcular dominance patternsAnatomic correlatesAnatomic studyVisual deprivationTransneuronal labelAfferent segregationDay 14Eye dominanceAfferentsAnatomic dataCortexSecond week
1999
Altered spatial patterns of functional thalamocortical connections in the barrel cortex after neonatal infraorbital nerve cut revealed by optical recording
Higashi S, Crair MC, Kurotani T, Inokawa H, Toyama K. Altered spatial patterns of functional thalamocortical connections in the barrel cortex after neonatal infraorbital nerve cut revealed by optical recording. Neuroscience 1999, 91: 439-452. PMID: 10366001, DOI: 10.1016/s0306-4522(98)00666-6.Peer-Reviewed Original ResearchConceptsInfraorbital nerve cutNerve cutNormal ratsLayer IVSomatosensory cortexDextran amine labelingThalamocortical slice preparationPostnatal day 7Cytochrome oxidase stainingThalamocortical transmissionThalamocortical connectionsDextran amineThalamocortical axonsThalamic stimulationBarrel cortexFunctional synapsesSlice preparationAxon terminalsVoltage-sensitive dyeTerminal arborsAltered spatial patternDay 7P5-P6RatsBarrel formation
1997
Silent Synapses during Development of Thalamocortical Inputs
Isaac J, Crair M, Nicoll R, Malenka R. Silent Synapses during Development of Thalamocortical Inputs. Neuron 1997, 18: 269-280. PMID: 9052797, DOI: 10.1016/s0896-6273(00)80267-6.Peer-Reviewed Original ResearchConceptsLong-term potentiationThalamocortical synapsesThalamocortical inputsSilent synapsesFunctional synapsesPostnatal day 8Rat somatosensory cortexActivity-dependent mechanismsActivity-dependent increaseEarly postnatal developmentSomatosensory cortexPostsynaptic activityTopographical projectionDay 8Postnatal developmentSynaptic connectionsSynaptic strengthSynapsesCortexSignificant proportionThalamusEarly developmentPotentiation