2024
Hebbian instruction of axonal connectivity by endogenous correlated spontaneous activity
Matsumoto N, Barson D, Liang L, Crair M. Hebbian instruction of axonal connectivity by endogenous correlated spontaneous activity. Science 2024, 385: eadh7814. PMID: 39146415, DOI: 10.1126/science.adh7814.Peer-Reviewed Original ResearchConceptsSpontaneous activitySpontaneous retinal wavesAxonal connectionsPatterns of correlated activityNeonatal miceEvidence in vivoRetinal wavesPostsynaptic neuronsNeuronal activityIn vivoAxonal arborsAxonal processesAxonsRetinocollicular axonsNeural connectionsIndividual axonsMorphological changesSubcellular precisionEndogenous patternMultimodal measures of spontaneous brain activity reveal both common and divergent patterns of cortical functional organization
Vafaii H, Mandino F, Desrosiers-Grégoire G, O’Connor D, Markicevic M, Shen X, Ge X, Herman P, Hyder F, Papademetris X, Chakravarty M, Crair M, Constable R, Lake E, Pessoa L. Multimodal measures of spontaneous brain activity reveal both common and divergent patterns of cortical functional organization. Nature Communications 2024, 15: 229. PMID: 38172111, PMCID: PMC10764905, DOI: 10.1038/s41467-023-44363-z.Peer-Reviewed Original Research
2023
Rapid fluctuations in functional connectivity of cortical networks encode spontaneous behavior
Benisty H, Barson D, Moberly A, Lohani S, Tang L, Coifman R, Crair M, Mishne G, Cardin J, Higley M. Rapid fluctuations in functional connectivity of cortical networks encode spontaneous behavior. Nature Neuroscience 2023, 27: 148-158. PMID: 38036743, PMCID: PMC11316935, DOI: 10.1038/s41593-023-01498-y.Peer-Reviewed Original ResearchConceptsFunctional connectivitySpontaneous behaviorCortical networksCortical network activityTime-varying functional connectivityFunctional magnetic resonanceCerebral cortexAwake miceDynamic functional connectivityAwake animalsNeighboring neuronsPatterned activityDistinct behavioral statesTwo-photon microscopyNeural activityCortical signalsBehavioral statesCortexNetwork activityCortical dynamicsMagnetic resonance
2022
Fluorescently-tagged magnetic protein nanoparticles for high-resolution optical and ultra-high field magnetic resonance dual-modal cerebral angiography
Mishra S, Herman P, Crair M, Constable R, Walsh J, Akif A, Verhagen J, Hyder F. Fluorescently-tagged magnetic protein nanoparticles for high-resolution optical and ultra-high field magnetic resonance dual-modal cerebral angiography. Nanoscale 2022, 14: 17770-17788. PMID: 36437785, PMCID: PMC9850399, DOI: 10.1039/d2nr04878g.Peer-Reviewed Original ResearchConceptsProtein nanoparticlesParamagnetic iron oxide nanoparticlesIron oxide nanoparticlesMagnetic resonance imaging (MRI) contrastRelaxivity ratioOxide nanoparticlesRapid renal clearanceNanoparticlesMRI propertiesImaging contrastMRI contrastCitric acidNeuroscience applicationsFluorescent dyeBlood biochemical assaysUnambiguous detectionRelaxivityCerebral angiographyDyePlatformMajor blood vesselsBiochemical assaysTechnologyBrain capillariesFluorescence angiography
2021
Retinal waves prime visual motion detection by simulating future optic flow
Ge X, Zhang K, Gribizis A, Hamodi AS, Sabino AM, Crair MC. Retinal waves prime visual motion detection by simulating future optic flow. Science 2021, 373 PMID: 34437090, PMCID: PMC8841103, DOI: 10.1126/science.abd0830.Peer-Reviewed Original ResearchConceptsEye-specific segregationSpontaneous retinal wavesVisual response propertiesSpontaneous retinal activityDirection-selective responsesSuperior colliculus neuronsOptic flow patternsRetinal wavesRetinal activityColliculus neuronsRetinal circuitsSpontaneous activityChronic disruptionVisual motion detectionEye openingTransient windowResponse propertiesOptic flowSensory experienceNeuronsEfferent feedback controls bilateral auditory spontaneous activity
Wang Y, Sanghvi M, Gribizis A, Zhang Y, Song L, Morley B, Barson DG, Santos-Sacchi J, Navaratnam D, Crair M. Efferent feedback controls bilateral auditory spontaneous activity. Nature Communications 2021, 12: 2449. PMID: 33907194, PMCID: PMC8079389, DOI: 10.1038/s41467-021-22796-8.Peer-Reviewed Original ResearchConceptsSpontaneous activityEfferent modulationEfferent pathwaysMedial olivocochlear systemCentral nervous systemCentral auditory systemInner hair cellsAuditory systemNicotinic acetylcholine receptorsSpontaneous activity patternsOlivocochlear systemHearing onsetEfferent systemChemogenetic experimentsBilateral couplingNervous systemAcetylcholine receptorsCircuit formationEfferent feedbackFiring patternsHair cellsΑ9/Auditory sensitivityBilateral correlationActivity patterns
2020
Retinal and Callosal Activity-Dependent Chandelier Cell Elimination Shapes Binocularity in Primary Visual Cortex
Wang BS, Bernardez Sarria MS, An X, He M, Alam NM, Prusky GT, Crair MC, Huang ZJ. Retinal and Callosal Activity-Dependent Chandelier Cell Elimination Shapes Binocularity in Primary Visual Cortex. Neuron 2020, 109: 502-515.e7. PMID: 33290732, PMCID: PMC7943176, DOI: 10.1016/j.neuron.2020.11.004.Peer-Reviewed Original ResearchConceptsPrimary visual cortexVisual cortexTranscallosal pathwayVisual fieldDeficient binocular visionGABAergic chandelier cellsBinocular circuitsBinocular visionChandelier cellsRetinal activityTranscallosal projectionsGeniculocortical inputCallosal activityCenter visual fieldBinocular regionCortexMassive apoptosisDevelopmental assemblyCritical periodV1IpsiBlockadePathwayBinocularityMiceSimultaneous cortex-wide fluorescence Ca2+ imaging and whole-brain fMRI
Lake EMR, Ge X, Shen X, Herman P, Hyder F, Cardin JA, Higley MJ, Scheinost D, Papademetris X, Crair MC, Constable RT. Simultaneous cortex-wide fluorescence Ca2+ imaging and whole-brain fMRI. Nature Methods 2020, 17: 1262-1271. PMID: 33139894, PMCID: PMC7704940, DOI: 10.1038/s41592-020-00984-6.Peer-Reviewed Original ResearchConceptsOptical measurementsBrain functionTransgenic murine modelFunctional magnetic resonance imagingMagnetic resonance imagingFluorescent measuresWhole-brain fMRIMurine modelResonance imagingFluorescence Ca2Human brain functionConnectivity strengthBOLD signalBrain activityWidefieldLow frequencyImagingModalitiesTransfer functionMeasurementsCortexTransverse sinus injections drive robust whole-brain expression of transgenes
Hamodi AS, Sabino A, Fitzgerald ND, Moschou D, Crair M. Transverse sinus injections drive robust whole-brain expression of transgenes. ELife 2020, 9: e53639. PMID: 32420870, PMCID: PMC7266618, DOI: 10.7554/elife.53639.Peer-Reviewed Original Research
2019
Simultaneous mesoscopic and two-photon imaging of neuronal activity in cortical circuits
Barson D, Hamodi AS, Shen X, Lur G, Constable RT, Cardin JA, Crair MC, Higley MJ. Simultaneous mesoscopic and two-photon imaging of neuronal activity in cortical circuits. Nature Methods 2019, 17: 107-113. PMID: 31686040, PMCID: PMC6946863, DOI: 10.1038/s41592-019-0625-2.Peer-Reviewed Original ResearchConceptsVasoactive intestinal peptide-expressing interneuronsBrain-wide network dynamicsTwo-photon calcium imagingEntire cortical mantleLocal neuronal circuitsLong-range cortical networksWidespread gene deliveryWidefield calciumPyramidal neuronsAwake miceCortical circuitsNeuronal activityCortical mantleTwo-photon imagingViral transduction methodsNeuronal circuitsCalcium imagingMouse brainFunctional connectivityLocal microcircuitsMammalian cortexCortical architectureCortical networksBrainActivity propagatesSynapse-Selective Control of Cortical Maturation and Plasticity by Parvalbumin-Autonomous Action of SynCAM 1
Ribic A, Crair MC, Biederer T. Synapse-Selective Control of Cortical Maturation and Plasticity by Parvalbumin-Autonomous Action of SynCAM 1. Cell Reports 2019, 26: 381-393.e6. PMID: 30625321, PMCID: PMC6345548, DOI: 10.1016/j.celrep.2018.12.069.Peer-Reviewed Original ResearchConceptsCortical plasticityCell adhesion molecule-1Critical periodJuvenile-like plasticityAdhesion molecule-1Primary visual cortexVisual critical periodThalamocortical inputsCortical maturationCircuit maturationV1 plasticityParvalbumin interneuronsFeedforward inhibitionSynaptic cell adhesion molecule 1Cell-autonomous mechanismsBrief lossCortical responsesSynaptic lociMolecule-1Visual cortexSynaptic factorsInterneuronsSpecific knockdownAdulthoodEyes
2018
Restoration of vision after de novo genesis of rod photoreceptors in mammalian retinas
Yao K, Qiu S, Wang YV, Park SJH, Mohns EJ, Mehta B, Liu X, Chang B, Zenisek D, Crair MC, Demb JB, Chen B. Restoration of vision after de novo genesis of rod photoreceptors in mammalian retinas. Nature 2018, 560: 484-488. PMID: 30111842, PMCID: PMC6107416, DOI: 10.1038/s41586-018-0425-3.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBeta CateninBlindnessCell CycleCell ProliferationCellular ReprogrammingDisease Models, AnimalFemaleGTP-Binding Protein alpha SubunitsHeterotrimeric GTP-Binding ProteinsMaleMiceNeurogenesisNeurogliaRegenerative MedicineRetinal Rod Photoreceptor CellsStem CellsTranscription FactorsTransducinVisual CortexVisual PathwaysConceptsMüller gliaGene transferMG proliferationRod photoreceptorsMammalian retinaCell fate specificationPopulations of stemSubsequent gene transferFate specificationRetinal stem cellsTranscription factorsRetinal neuronsCell cycleDouble mutant miceRegenerative machineryDe novo genesisΒ-cateninStem cellsProgenitor cellsRestoration of visionPrimary visual cortexMutant miceAbsence of injuryPhotoreceptorsRetinal injuryHomeostatic Control of Spontaneous Activity in the Developing Auditory System
Babola TA, Li S, Gribizis A, Lee BJ, Issa JB, Wang HC, Crair MC, Bergles DE. Homeostatic Control of Spontaneous Activity in the Developing Auditory System. Neuron 2018, 99: 511-524.e5. PMID: 30077356, PMCID: PMC6100752, DOI: 10.1016/j.neuron.2018.07.004.Peer-Reviewed Original ResearchConceptsSpiral ganglion neuronsSpontaneous activityAuditory systemDirect neuronal excitationGlutamate releaseEnhanced excitabilityGanglion neuronsUnanesthetized miceSynaptic excitationHearing onsetNeuronal excitationTherapeutic approachesMouse modelSpontaneous burstsCongenital formSynchronized activityHair cellsHomeostatic mechanismsNeuronsHomeostatic controlSimilar frequencyCircuit developmentMiceInfluence developmentDeafness
2017
Architecture, Function, and Assembly of the Mouse Visual System
Seabrook TA, Burbridge TJ, Crair MC, Huberman AD. Architecture, Function, and Assembly of the Mouse Visual System. Annual Review Of Neuroscience 2017, 40: 499-538. PMID: 28772103, DOI: 10.1146/annurev-neuro-071714-033842.Peer-Reviewed Original ResearchConceptsSpecific cell typesMammalian central nervous systemGenetic perturbationsModel speciesCell typesCausal testingSpeciesVivo labelingBroad scaleVisual system structuresManipulation of neuronsSensory systemsCentral nervous systemVisual circuitryPowerful toolNervous systemLarge cadreHumansMouse visual systemAdditional experimentationPathwayFunctionConvenient sizeAssemblyVisual systemReciprocal Connections Between Cortex and Thalamus Contribute to Retinal Axon Targeting to Dorsal Lateral Geniculate Nucleus
Diao Y, Cui L, Chen Y, Burbridge TJ, Han W, Wirth B, Sestan N, Crair MC, Zhang J. Reciprocal Connections Between Cortex and Thalamus Contribute to Retinal Axon Targeting to Dorsal Lateral Geniculate Nucleus. Cerebral Cortex 2017, 28: 1168-1182. PMID: 28334242, PMCID: PMC6059179, DOI: 10.1093/cercor/bhx028.Peer-Reviewed Original ResearchMeSH KeywordsAction PotentialsAnimalsAnimals, NewbornAxonsCalciumCholera ToxinDNA-Binding ProteinsEmbryo, MammalianExcitatory Amino Acid AgonistsFeeding BehaviorGene Expression Regulation, DevelopmentalGeniculate BodiesGreen Fluorescent ProteinsHomeodomain ProteinsMiceMice, TransgenicNerve Tissue ProteinsRetinaSerine-Arginine Splicing FactorsSuperior ColliculiTranscription FactorsVisual CortexVisual PathwaysConceptsDorsal lateral geniculate nucleusLateral geniculate nucleusVentral lateral geniculate nucleusGeniculate nucleusRetinal projectionsReciprocal connectionsSuperior colliculusConditional knockoutVivo electrophysiology experimentsAbnormal retinal projectionsPrimary visual cortexDLGN neuronsCorticothalamic inputsControl miceThalamocortical tractV1 lesionsThalamus contributeRetinal innervationThalamocortical projectionsCKO miceMouse modelRetinal inputVisual cortexVisual circuitsAxon targeting
2016
Retinal Wave Patterns Are Governed by Mutual Excitation among Starburst Amacrine Cells and Drive the Refinement and Maintenance of Visual Circuits
Xu HP, Burbridge TJ, Ye M, Chen M, Ge X, Zhou ZJ, Crair MC. Retinal Wave Patterns Are Governed by Mutual Excitation among Starburst Amacrine Cells and Drive the Refinement and Maintenance of Visual Circuits. Journal Of Neuroscience 2016, 36: 3871-3886. PMID: 27030771, PMCID: PMC4812142, DOI: 10.1523/jneurosci.3549-15.2016.Peer-Reviewed Original ResearchMeSH KeywordsAction PotentialsAge FactorsAmacrine CellsAnimalsAnimals, NewbornCalciumCholera ToxinCholine O-AcetyltransferaseCholinergic AgentsGene Expression Regulation, DevelopmentalGreen Fluorescent ProteinsIn Vitro TechniquesMiceMice, TransgenicPatch-Clamp TechniquesReceptors, NicotinicRetinaRetinal Ganglion CellsVesicular Glutamate Transport Protein 1Visual PathwaysConceptsEye-specific segregationVisual circuit developmentStarburst amacrine cellsStage III retinal wavesRetinal ganglion cellsRetinal wavesAmacrine cellsGlutamatergic wavesGanglion cellsSpontaneous activityVisual circuitsStage IICircuit developmentHigher-order visual areasNicotinic acetylcholine receptorsRetinal cell typesMammalian visual systemAcetylcholine receptorsΒ2-nAChRsVisual areasPatterned activityPatterning of activityΒ2 subunitCell typesCells
2015
A short N-terminal domain of HDAC4 preserves photoreceptors and restores visual function in retinitis pigmentosa
Guo X, Wang SB, Xu H, Ribic A, Mohns EJ, Zhou Y, Zhu X, Biederer T, Crair MC, Chen B. A short N-terminal domain of HDAC4 preserves photoreceptors and restores visual function in retinitis pigmentosa. Nature Communications 2015, 6: 8005. PMID: 26272629, PMCID: PMC4538705, DOI: 10.1038/ncomms9005.Peer-Reviewed Original ResearchConceptsRetinitis pigmentosaVisual functionRd1 miceCone photoreceptor deathMultiple cell death pathwaysRd1 mutationPhotoreceptor protectionPhotoreceptor deathEffective treatmentAnimal modelsPhotoreceptor degenerationRod deathCone photoreceptorsRod survivalInvaluable animal modelHDAC4 proteinMicePigmentosaCell death pathwaysRod photoreceptorsProtein therapyTherapyHDAC4DeathSurvivalSpatial pattern of spontaneous retinal waves instructs retinotopic map refinement more than activity frequency
Xu HP, Burbridge TJ, Chen MG, Ge X, Zhang Y, Zhou ZJ, Crair MC. Spatial pattern of spontaneous retinal waves instructs retinotopic map refinement more than activity frequency. Developmental Neurobiology 2015, 75: 621-640. PMID: 25787992, PMCID: PMC4697738, DOI: 10.1002/dneu.22288.Peer-Reviewed Original ResearchConceptsSpontaneous retinal activityEye-specific segregationRetinal activityRetinal ganglion cell projectionsEye-specific projectionsGanglion cell projectionsPrecise neural connectionsRetinotopic map refinementSpontaneous retinal wavesNicotinic acetylcholine receptorsInstructive roleEye of originRetinal wavesRetinotopic refinementSpontaneous activityRetinotopic mapAcetylcholine receptorsDevelopment of retinotopyBrain wiringPermissive roleMutant miceNeural connectionsOverall activity levelsSpontaneous wavesMice
2014
Visual Circuit Development Requires Patterned Activity Mediated by Retinal Acetylcholine Receptors
Burbridge TJ, Xu HP, Ackman JB, Ge X, Zhang Y, Ye MJ, Zhou ZJ, Xu J, Contractor A, Crair MC. Visual Circuit Development Requires Patterned Activity Mediated by Retinal Acetylcholine Receptors. Neuron 2014, 84: 1049-1064. PMID: 25466916, PMCID: PMC4258148, DOI: 10.1016/j.neuron.2014.10.051.Peer-Reviewed Original ResearchMeSH KeywordsAction PotentialsAge FactorsAnalysis of VarianceAnimalsAnimals, NewbornCalciumCyclic AMPCyclic GMPCyclooxygenase InhibitorsEye ProteinsFunctional LateralityHomeodomain ProteinsIn Vitro TechniquesMeclofenamic AcidMiceMice, TransgenicPaired Box Transcription FactorsPAX6 Transcription FactorReceptors, NicotinicRepressor ProteinsRetinaRetinal Ganglion CellsRNA, MessengerVisual PathwaysConceptsRetinal wavesCircuit refinementNervous systemNeural circuitsVisual circuit developmentSpontaneous retinal activityRetinal activityRetinorecipient regionsSpontaneous activityAcetylcholine receptorsPharmacological manipulationVisual circuitsSynaptic connectionsVertebrate nervous systemNeural activityOnset of sensationAltered patternCircuit developmentSensory systemsCausal linkEarly developmentActivityBrainReceptorsLaminar and Temporal Expression Dynamics of Coding and Noncoding RNAs in the Mouse Neocortex
Fertuzinhos S, Li M, Kawasawa YI, Ivic V, Franjic D, Singh D, Crair M, Šestan N. Laminar and Temporal Expression Dynamics of Coding and Noncoding RNAs in the Mouse Neocortex. Cell Reports 2014, 6: 938-950. PMID: 24561256, PMCID: PMC3999901, DOI: 10.1016/j.celrep.2014.01.036.Peer-Reviewed Original ResearchConceptsTemporal expression dynamicsExpression dynamicsDistinct biological processesGene coexpression networksSpecific spatiotemporal expressionSmall RNAsNoncoding RNAsTranscriptional differencesTranscriptional eventsSplicing patternsCoexpression networkMRNA interactionsPotential miRNATranscriptional overlapDeep sequencingBiological processesSpatiotemporal expressionMouse neocortexCell typesTranscriptsStudies of neurodevelopmentIntegrated viewTemporal dynamicsCharacteristic setTranscriptome