2013
Exploring the Nicotinic Acetylcholine Receptor-Associated Proteome with iTRAQ and Transgenic Mice
McClure-Begley TD, Stone KL, Marks MJ, Grady SR, Colangelo CM, Lindstrom JM, Picciotto MR. Exploring the Nicotinic Acetylcholine Receptor-Associated Proteome with iTRAQ and Transgenic Mice. Genomics Proteomics & Bioinformatics 2013, 11: 207-218. PMID: 23891776, PMCID: PMC3806329, DOI: 10.1016/j.gpb.2013.05.005.Peer-Reviewed Original ResearchConceptsNicotinic acetylcholine receptorsPutative interacting proteinsΒ2 subunitMammalian central nervous systemAcetylcholine receptorsInteracting proteinProteomic analysisQuantitative proteomicsCytoskeletal rearrangementsIsobaric tagsNeuronal nicotinic acetylcholine receptorsCalcium signalingAbsolute quantitationΑ4β2 nAChRsProteinReduced expressionΒ2 subunit expressionPotential targetCentral nervous systemSubunitsExpressionPrincipal receptorTransgenic miceSubunit expressionΑ4
2011
Galanin negatively modulates opiate withdrawal via galanin receptor 1
Holmes FE, Armenaki A, Iismaa TP, Einstein EB, Shine J, Picciotto MR, Wynick D, Zachariou V. Galanin negatively modulates opiate withdrawal via galanin receptor 1. Psychopharmacology 2011, 220: 619-625. PMID: 21969124, PMCID: PMC3324978, DOI: 10.1007/s00213-011-2515-x.Peer-Reviewed Original ResearchConceptsGalanin receptor 1Chronic morphine administrationMorphine administrationLocus coeruleusGalanin expressionOpiate withdrawalReceptor 1Distinct G protein-coupled receptorsPrecipitation of withdrawalAction of morphineDoses of morphineWild-type miceTransgenic mouse lineG protein-coupled receptorsExpress galaninGalanin levelsWild-type controlsProtein-coupled receptorsNeuropeptide galaninMorphine dependenceWithdrawal signsOpiate dependenceGalaninTransgenic miceGalR2 geneFACS purification of immunolabeled cell types from adult rat brain
Guez-Barber D, Fanous S, Harvey BK, Zhang Y, Lehrmann E, Becker KG, Picciotto MR, Hope BT. FACS purification of immunolabeled cell types from adult rat brain. Journal Of Neuroscience Methods 2011, 203: 10-18. PMID: 21911005, PMCID: PMC3221768, DOI: 10.1016/j.jneumeth.2011.08.045.Peer-Reviewed Original ResearchConceptsFluorescence-activated cell sortingCell typesPromoter-driven reporter geneBrain tissueExtracellular proteinsFACS procedureReporter geneFACS purificationRat brainReal-time PCRMolecular analysisSorted cellsCell sortingAdult rat brainTime PCRIntact cell bodiesTransgenic miceMolecular alterationsNeuN antibodyQuantitative assayCell bodiesAvailable antibodiesBrainTissueGenes
2009
Localized low‐level re‐expression of high‐affinity mesolimbic nicotinic acetylcholine receptors restores nicotine‐induced locomotion but not place conditioning
Mineur YS, Brunzell DH, Grady SR, Lindstrom JM, McIntosh JM, Marks MJ, King SL, Picciotto MR. Localized low‐level re‐expression of high‐affinity mesolimbic nicotinic acetylcholine receptors restores nicotine‐induced locomotion but not place conditioning. Genes Brain & Behavior 2009, 8: 257-266. PMID: 19077117, PMCID: PMC2672109, DOI: 10.1111/j.1601-183x.2008.00468.x.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsConditioning, PsychologicalCyclic AMP Response Element-Binding ProteinDopamineGamma-Aminobutyric AcidGene Expression RegulationLocomotionMiceMice, Inbred C57BLMice, TransgenicNicotineNicotinic AgonistsPhosphorylationPresynaptic TerminalsReceptors, NicotinicRewardSynaptosomesTobacco Use DisorderVentral Tegmental AreaConceptsVentral tegmental areaGamma-aminobutyric acidNicotinic acetylcholine receptorsCyclic AMP response element binding proteinTegmental areaPlace preferenceTransgenic miceAcetylcholine receptorsBeta2 knockout micePedunculopontine tegmental areaSystemic nicotine administrationHigh-affinity nAChRsLaterodorsal tegmental nucleusNicotine place preferenceNicotinic partial agonistPlace preference testingDifferent neuronal subtypesAMP response element binding proteinTotal CREB levelsResponse element-binding proteinDA neuronsCholinergic neuronsNicotine administrationSystemic nicotineSmoking cessation
2005
Galanin can attenuate opiate reinforcement and withdrawal
Picciotto MR, Hawes JJ, Brunzell DH, Zachariou V. Galanin can attenuate opiate reinforcement and withdrawal. Neuropeptides 2005, 39: 313-315. PMID: 15944028, DOI: 10.1016/j.npep.2004.12.001.Peer-Reviewed Original ResearchConceptsOpiate reinforcementGalanin receptor agonistAction of opiatesUseful therapeutic agentEndogenous galaninReceptor agonistGalaninKnockout miceBrain areasTransgenic miceBrain regionsBehavioral signsOpiate addictionTherapeutic agentsBody of dataAltered susceptibilityWithdrawalMiceReceptorsAgonistsOpiates
2003
Sex differences in response to oral amitriptyline in three animal models of depression in C57BL/6J mice
Caldarone BJ, Karthigeyan K, Harrist A, Hunsberger JG, Wittmack E, King SL, Jatlow P, Picciotto MR. Sex differences in response to oral amitriptyline in three animal models of depression in C57BL/6J mice. Psychopharmacology 2003, 170: 94-101. PMID: 12879206, DOI: 10.1007/s00213-003-1518-7.Peer-Reviewed Original ResearchConceptsAntidepressant-like effectsTail suspension testDuration of treatmentAntidepressant amitriptylineTransgenic miceChronic treatmentImmobility timeB6 miceDepression modelChronic AMI treatmentFemale B6 miceTricyclic antidepressant amitriptylineMechanism of actionAMI administrationOral amitriptylineAntidepressant treatmentControl miceLH paradigmSwim testFemale miceOral administrationAMI treatmentEscape latencySuspension testAnimal modelsThe neuropeptide galanin modulates behavioral and neurochemical signs of opiate withdrawal
Zachariou V, Brunzell DH, Hawes J, Stedman DR, Bartfai T, Steiner RA, Wynick D, Langel Ü, Picciotto MR. The neuropeptide galanin modulates behavioral and neurochemical signs of opiate withdrawal. Proceedings Of The National Academy Of Sciences Of The United States Of America 2003, 100: 9028-9033. PMID: 12853567, PMCID: PMC166432, DOI: 10.1073/pnas.1533224100.Peer-Reviewed Original ResearchConceptsMorphine withdrawal signsWithdrawal signsOpiate withdrawalGalanin agonistsEffects of galaninLocus coeruleus neuronsC-Fos immunoreactivityBlood-brain barrierEndogenous galaninMorphine withdrawalNoradrenergic neuronsCoeruleus neuronsC57BL/6 miceNeurochemical signsNeuropeptide galaninLocus coeruleusPossible molecular mechanismsTyrosine hydroxylaseGalaninNeuronal activityGalanin peptidePhysical signsTransgenic miceDrug dependenceBehavioral effectsConditional Expression in Corticothalamic Efferents Reveals a Developmental Role for Nicotinic Acetylcholine Receptors in Modulation of Passive Avoidance Behavior
King SL, Marks MJ, Grady SR, Caldarone BJ, Koren AO, Mukhin AG, Collins AC, Picciotto MR. Conditional Expression in Corticothalamic Efferents Reveals a Developmental Role for Nicotinic Acetylcholine Receptors in Modulation of Passive Avoidance Behavior. Journal Of Neuroscience 2003, 23: 3837-3843. PMID: 12736354, PMCID: PMC6742204, DOI: 10.1523/jneurosci.23-09-03837.2003.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAvoidance LearningBehavior, AnimalBinding, CompetitiveCerebral CortexElectroshockGene Expression Regulation, DevelopmentalMiceMice, Inbred C57BLMice, Inbred ICRMice, KnockoutMice, TransgenicNeurons, EfferentNicotineNicotinic AgonistsPresynaptic TerminalsReceptors, NicotinicTetracyclineThalamusTransgenesConceptsPrenatal nicotine exposureNicotinic acetylcholine receptorsPassive avoidanceLines of miceNicotine exposureTransgenic miceAcetylcholine receptorsHigh-affinity nicotinic acetylcholine receptorsTetracycline-regulated transgenic systemHigh-affinity nicotinic receptorsPotential neuroanatomical substratesRubidium efflux assaysHigh-affinity nAChRsEffects of nicotineSpecific neuronal populationsPassive avoidance behaviorAttention deficit hyperactivity disorderWild-type animalsDeficit hyperactivity disorderPresynaptic nAChRsCorticothalamic neuronsSite of actionNicotinic receptorsNeuronal populationsCognitive impairment
1999
Expression of the transcription factor ΔFosB in the brain controls sensitivity to cocaine
Kelz M, Chen J, Carlezon W, Whisler K, Gilden L, Beckmann A, Steffen C, Zhang Y, Marotti L, Self D, Tkatch T, Baranauskas G, Surmeier D, Neve R, Duman R, Picciotto M, Nestler E. Expression of the transcription factor ΔFosB in the brain controls sensitivity to cocaine. Nature 1999, 401: 272-276. PMID: 10499584, DOI: 10.1038/45790.Peer-Reviewed Original ResearchConceptsNucleus accumbensGlutamate receptor subunit GluR2Locomotor-activating effectsFos family transcription factorsTranscription factor ΔFosBDrugs of abuseΔFosB expressionAcute exposureTransgenic miceChronic exposureSubunit GluR2ΔFosBCocaine addictionAccumbensCocainePersistent expressionTranscription factorsSustained accumulationBrainExposureStable isoformSubset of nucleiExpressionGene expressionMorphine
1998
Using Knockout and Transgenic Mice to Study Neurophysiology and Behavior
PICCIOTTO M, WICKMAN K. Using Knockout and Transgenic Mice to Study Neurophysiology and Behavior. Physiological Reviews 1998, 78: 1131-1163. PMID: 9790572, DOI: 10.1152/physrev.1998.78.4.1131.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus Statements
1995
Promoter elements conferring neuron-specific expression of the β2-subunit of the neuronal nicotinic acetylcholine receptor studiedin vitro and in transgenic mice
Bessis A, Salmon A, Zoli M, Le Novère N, Picciotto M, Changeux J. Promoter elements conferring neuron-specific expression of the β2-subunit of the neuronal nicotinic acetylcholine receptor studiedin vitro and in transgenic mice. Neuroscience 1995, 69: 807-819. PMID: 8596650, DOI: 10.1016/0306-4522(95)00303-z.Peer-Reviewed Original ResearchConceptsSpatio-temporal expression patternsFunctional E-boxesCell-specific transcriptionNeuron-specific transcriptionSite-directed mutagenesisTransient transfection assaysNeuron-specific expressionNeuronal genesRE1 sequenceTranscribed regionDeletion analysisE-boxRegulatory elementsPromoter elementsUpstream sequencesTransgenic miceTransfection assaysReporter geneRepressor elementExpression patternsNeuronal nicotinic acetylcholine receptorsGenesNicotinic acetylcholine receptorsRegulatory propertiesTranscription