2023
How can I measure brain acetylcholine levels in vivo? Advantages and caveats of commonly used approaches
Mineur Y, Picciotto M. How can I measure brain acetylcholine levels in vivo? Advantages and caveats of commonly used approaches. Journal Of Neurochemistry 2023, 167: 3-15. PMID: 37621094, PMCID: PMC10616967, DOI: 10.1111/jnc.15943.Peer-Reviewed Original Research
2020
Ronald S. Duman, PhD (1954–2020)
Taylor J, DiLeone R, Picciotto M. Ronald S. Duman, PhD (1954–2020). Nature Neuroscience 2020, 23: 595-595. PMCID: PMC7190563, DOI: 10.1038/s41593-020-0629-3.Commentaries, Editorials and Letters
2011
FACS purification of immunolabeled cell types from adult rat brain
Guez-Barber D, Fanous S, Harvey BK, Zhang Y, Lehrmann E, Becker KG, Picciotto MR, Hope BT. FACS purification of immunolabeled cell types from adult rat brain. Journal Of Neuroscience Methods 2011, 203: 10-18. PMID: 21911005, PMCID: PMC3221768, DOI: 10.1016/j.jneumeth.2011.08.045.Peer-Reviewed Original ResearchConceptsFluorescence-activated cell sortingCell typesPromoter-driven reporter geneBrain tissueExtracellular proteinsFACS procedureReporter geneFACS purificationRat brainReal-time PCRMolecular analysisSorted cellsCell sortingAdult rat brainTime PCRIntact cell bodiesTransgenic miceMolecular alterationsNeuN antibodyQuantitative assayCell bodiesAvailable antibodiesBrainTissueGenesAn Instructive Role for Patterned Spontaneous Retinal Activity in Mouse Visual Map Development
Xu HP, Furman M, Mineur YS, Chen H, King SL, Zenisek D, Zhou ZJ, Butts DA, Tian N, Picciotto MR, Crair MC. An Instructive Role for Patterned Spontaneous Retinal Activity in Mouse Visual Map Development. Neuron 2011, 70: 1115-1127. PMID: 21689598, PMCID: PMC3119851, DOI: 10.1016/j.neuron.2011.04.028.Peer-Reviewed Original ResearchConceptsSpontaneous retinal activityRetinal activityRetinal ganglion cell projectionsEye-specific segregationGanglion cell projectionsSpontaneous retinal wavesActivity-dependent refinementRetinal ganglion cellsMouse visual systemComplex neural circuitsEye of originRetinal wavesGanglion cellsRetinotopic refinementNeuronal activitySpontaneous activityMammalian visual systemAcetylcholine receptorsNeuronal connectivityMammalian brainNeural circuitsOverall activity levelsActivity levelsBrainVisual system
2004
Characterization of GalR1, GalR2, and GalR3 immunoreactivity in catecholaminergic nuclei of the mouse brain
Hawes JJ, Picciotto MR. Characterization of GalR1, GalR2, and GalR3 immunoreactivity in catecholaminergic nuclei of the mouse brain. The Journal Of Comparative Neurology 2004, 479: 410-423. PMID: 15514977, DOI: 10.1002/cne.20329.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBrainCatecholaminesGalaninImmunohistochemistryLocus CoeruleusMiceNeural PathwaysNeuronsNucleus AccumbensOpioid-Related DisordersReceptor, Galanin, Type 1Receptor, Galanin, Type 2Receptor, Galanin, Type 3Receptors, GalaninRewardSubstantia NigraTyrosine 3-MonooxygenaseVentral Tegmental AreaConceptsVentral tegmental areaSubstantia nigraLocus coeruleusNucleus accumbensGalanin receptorsBrain areasMouse brainDistribution of immunoreactivityNoradrenergic transmissionGalanin bindingOpiate withdrawalTegmental areaCatecholaminergic nucleiTyrosine hydroxylaseDopamine neurotransmissionGalR1GalR2GalR3BrainProtein levelsDrug addictionGalaninImmunoreactivityReceptorsCoeruleus
2000
5-Iodo-A-85380, an α4β2 Subtype-Selective Ligand for Nicotinic Acetylcholine Receptors
Mukhin A, Gündisch D, Horti A, Koren A, Tamagnan G, Kimes A, Chambers J, Vaupel D, King S, Picciotto M, Innis R, London E. 5-Iodo-A-85380, an α4β2 Subtype-Selective Ligand for Nicotinic Acetylcholine Receptors. Molecular Pharmacology 2000, 57: 642-649. PMID: 10692507, DOI: 10.1124/mol.57.3.642.Peer-Reviewed Original ResearchConceptsNicotinic acetylcholine receptorsAlpha4beta2 nAChRsAcetylcholine receptorsNeuronal nicotinic acetylcholine receptorsAffinity of epibatidineRat adrenal glandMuscle-type nAChRsSubtype-selective ligandsAlpha4beta2 subtypeAdrenal glandRat brainSelective radioligandBrain regionsNAChRsBeta4 subunitsRadioiodinated ligandBeta2 subunitVivo studiesEpibatidineVivo experimentsHuman brainSubtypesRadioligandBrainReceptors
1999
Expression of the transcription factor ΔFosB in the brain controls sensitivity to cocaine
Kelz M, Chen J, Carlezon W, Whisler K, Gilden L, Beckmann A, Steffen C, Zhang Y, Marotti L, Self D, Tkatch T, Baranauskas G, Surmeier D, Neve R, Duman R, Picciotto M, Nestler E. Expression of the transcription factor ΔFosB in the brain controls sensitivity to cocaine. Nature 1999, 401: 272-276. PMID: 10499584, DOI: 10.1038/45790.Peer-Reviewed Original ResearchConceptsNucleus accumbensGlutamate receptor subunit GluR2Locomotor-activating effectsFos family transcription factorsTranscription factor ΔFosBDrugs of abuseΔFosB expressionAcute exposureTransgenic miceChronic exposureSubunit GluR2ΔFosBCocaine addictionAccumbensCocainePersistent expressionTranscription factorsSustained accumulationBrainExposureStable isoformSubset of nucleiExpressionGene expressionMorphineTwo pharmacologically distinct components of nicotinic receptor-mediated rubidium efflux in mouse brain require the beta2 subunit.
Marks MJ, Whiteaker P, Calcaterra J, Stitzel JA, Bullock AE, Grady SR, Picciotto MR, Changeux JP, Collins AC. Two pharmacologically distinct components of nicotinic receptor-mediated rubidium efflux in mouse brain require the beta2 subunit. Journal Of Pharmacology And Experimental Therapeutics 1999, 289: 1090-103. PMID: 10215692.Peer-Reviewed Original ResearchConceptsBeta2 subunitBeta2 null mutant miceConcentration-effect curvesMouse brain synaptosomesAlpha4beta2 receptorsBrain synaptosomesNicotinic agonistsMouse brainRubidium effluxMutant miceLine radioactivity detectionDHbetaEAgonistsEffluxBrainStimulationRadioactivity detectionPotencyHexamethoniumErythroidineResponseAcetylcholineMethyllycaconitineAntagonistBungarotoxin
1998
Nicotine Addiction: From Molecules to Behavior
Picciotto M. Nicotine Addiction: From Molecules to Behavior. The Neuroscientist 1998, 4: 391-394. DOI: 10.1177/107385849800400610.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsNicotine addictionAction of nicotineNicotinic acetylcholine receptorsBinding of nicotineDrugs of abuseUnique molecular targetNicotine dependenceNovel treatmentsAcetylcholine receptorsDopamine physiologyMolecular targetsCommon pathwayNicotineBrainSite of interventionNeurobiological processesBiochemical targetsAddictionDrugsPathwaySmokingMiceReceptorsAcetylcholine receptors containing the β2 subunit are involved in the reinforcing properties of nicotine
Picciotto M, Zoli M, Rimondini R, Léna C, Marubio L, Pich E, Fuxe K, Changeux J. Acetylcholine receptors containing the β2 subunit are involved in the reinforcing properties of nicotine. Nature 1998, 391: 173-177. PMID: 9428762, DOI: 10.1038/34413.Peer-Reviewed Original ResearchMeSH Keywords3,4-Dihydroxyphenylacetic AcidAcetylcholineAnimalsBinding SitesCarrier ProteinsCocaineConditioning, OperantDopamineDopamine Plasma Membrane Transport ProteinsHomovanillic AcidIn Vitro TechniquesMaleMembrane GlycoproteinsMembrane Transport ProteinsMiceMice, Inbred C57BLMice, Inbred DBAMice, KnockoutMicrodialysisMotor ActivityNerve Tissue ProteinsNicotineNucleus AccumbensPatch-Clamp TechniquesReceptors, NicotinicSecond Messenger SystemsSubstantia NigraVentral Tegmental AreaConceptsProperties of nicotineAcetylcholine receptorsVentral striatumΒ2 subunitNeuronal nicotinic acetylcholine receptorsMesencephalic dopaminergic neuronsEffects of nicotineWild-type micePatch-clamp recordingsMesolimbic dopamine systemNicotinic acetylcholine receptorsDrugs of abuseDopaminergic neuronsMesolimbic systemDopamine releaseDopamine systemMutant miceMiceNicotineNeurotransmitter dopamineStriatumReceptorsNeuronsReleaseBrain
1995
Abnormal avoidance learning in mice lacking functional high-affinity nicotine receptor in the brain
Picciotto M, Zoli M, Léna C, Bessis A, Lallemand Y, LeNovère N, Vincent P, Pich E, Brûlet P, Changeux J. Abnormal avoidance learning in mice lacking functional high-affinity nicotine receptor in the brain. Nature 1995, 374: 65-67. PMID: 7870173, DOI: 10.1038/374065a0.Peer-Reviewed Original ResearchConceptsHigh-affinity nicotine receptorsNeuronal nicotinic acetylcholine receptorsBrains of miceΒ2-/- miceNicotinic acetylcholine receptorsThalamic neuronsNicotine applicationFunctional nAChRsNicotine receptorsBrain slicesNicotinic subunitsAbnormal avoidanceAcetylcholine receptorsAspects of behaviorHigh-affinity binding sitesMutant miceElectrophysiological recordingsPassive avoidanceAssociative memoryMiceNicotineNeuronal nicotinic subunitsNon-mutant siblingsBrainReceptors