2021
Early developmental asymmetries in cell lineage trees in living individuals
Fasching L, Jang Y, Tomasi S, Schreiner J, Tomasini L, Brady MV, Bae T, Sarangi V, Vasmatzis N, Wang Y, Szekely A, Fernandez TV, Leckman JF, Abyzov A, Vaccarino FM. Early developmental asymmetries in cell lineage trees in living individuals. Science 2021, 371: 1245-1248. PMID: 33737484, PMCID: PMC8324008, DOI: 10.1126/science.abe0981.Peer-Reviewed Original Research
2017
Intersection of diverse neuronal genomes and neuropsychiatric disease: The Brain Somatic Mosaicism Network
McConnell MJ, Moran JV, Abyzov A, Akbarian S, Bae T, Cortes-Ciriano I, Erwin JA, Fasching L, Flasch DA, Freed D, Ganz J, Jaffe AE, Kwan KY, Kwon M, Lodato MA, Mills RE, Paquola ACM, Rodin RE, Rosenbluh C, Sestan N, Sherman MA, Shin JH, Song S, Straub RE, Thorpe J, Weinberger DR, Urban AE, Zhou B, Gage FH, Lehner T, Senthil G, Walsh CA, Chess A, Courchesne E, Gleeson JG, Kidd JM, Park PJ, Pevsner J, Vaccarino FM, Barton A, Bekiranov S, Bohrson C, Burbulis I, Chronister W, Coppola G, Daily K, D’Gama A, Emery S, Frisbie T, Gao T, Gulyás-Kovács A, Haakenson M, Keil J, Kopera H, Lam M, Lee E, Marques-Bonet T, Mathern G, Moldovan J, Oetjens M, Omberg L, Peters M, Pochareddy S, Pramparo T, Ratan A, Sanavia T, Shi L, Skarica M, Wang J, Wang M, Wang Y, Wierman M, Wolpert M, Woodworth M, Zhao X, Zhou W. Intersection of diverse neuronal genomes and neuropsychiatric disease: The Brain Somatic Mosaicism Network. Science 2017, 356 PMID: 28450582, PMCID: PMC5558435, DOI: 10.1126/science.aal1641.Peer-Reviewed Original ResearchConceptsSomatic mutationsComplex genetic architectureStructural genomic variantsNeuronal genomeNeuronal transcriptomeGenetic architectureCell divisionCellular metabolismGenomic variantsLong life spanDNA damageComplex neuropsychiatric disorderCellular expansionNeuropsychiatric diseasesNeuropsychiatric disordersProgenitor cellsSomatic mosaicismIndividual neurodevelopmentSmall populationCell proliferationPopulation-based studyMutationsGermline variantsLife spanBrain development
2004
Loss of Glutamatergic Pyramidal Neurons in Frontal and Temporal Cortex Resulting from Attenuation of FGFR1 Signaling Is Associated with Spontaneous Hyperactivity in Mice
Shin DM, Korada S, Raballo R, Shashikant CS, Simeone A, Taylor JR, Vaccarino F. Loss of Glutamatergic Pyramidal Neurons in Frontal and Temporal Cortex Resulting from Attenuation of FGFR1 Signaling Is Associated with Spontaneous Hyperactivity in Mice. Journal Of Neuroscience 2004, 24: 2247-2258. PMID: 14999075, PMCID: PMC6730438, DOI: 10.1523/jneurosci.5285-03.2004.Peer-Reviewed Original ResearchMeSH KeywordsAdrenergic alpha-AgonistsAmphetamineAnimalsCell DifferentiationCell DivisionFrontal LobeGlutamic AcidGuanfacineHumansHyperkinesisMiceMice, TransgenicNervous System MalformationsNeural InhibitionPyramidal CellsReceptor Protein-Tyrosine KinasesReceptor, Fibroblast Growth Factor, Type 1Receptors, Adrenergic, alpha-2Receptors, Fibroblast Growth FactorSignal TransductionStereotypic Movement DisorderTemporal LobeConceptsPyramidal neuronsCortical developmentTemporal areaSubcortical monoaminergic systemsGlutamatergic pyramidal neuronsCajal-Retzius cellsCortical GABAergic interneuronsCerebral cortical developmentAdrenergic receptor agonistEmbryonic neural progenitor cellsTemporal cortical areasReceptor gene productsNeural progenitor cellsEmbryonic brain developmentLocomotor hyperactivityRadial glia fibersCerebral cortexGlutamatergic neuronsBasal gangliaGABAergic interneuronsMonoaminergic systemsCortical plateReceptor agonistSpontaneous hyperactivityCortical areasFibroblast Growth Factor 2 Is Required for Maintaining the Neural Stem Cell Pool in the Mouse Brain Subventricular Zone
Zheng W, Nowakowski RS, Vaccarino FM. Fibroblast Growth Factor 2 Is Required for Maintaining the Neural Stem Cell Pool in the Mouse Brain Subventricular Zone. Developmental Neuroscience 2004, 26: 181-196. PMID: 15711059, DOI: 10.1159/000082136.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBiomarkersBrainCell Cycle ProteinsCell DifferentiationCell DivisionCell LineageCell ProliferationCerebral CortexDown-RegulationImmunohistochemistryLateral VentriclesMiceMice, KnockoutNeurogliaNeuronsOlfactory BulbReceptor Protein-Tyrosine KinasesReceptor, Fibroblast Growth Factor, Type 2Receptors, Fibroblast Growth FactorStem CellsConceptsStem cell poolNeural stem cellsFgf2 knockout miceSlower cell cycle kineticsProgenitor cell populationsSubventricular zoneCell poolNeural stem cell poolGene productsProgenitor populationsFibroblast growth factor-2Olfactory bulbKnockout miceCell cycleOlfactory bulb neurogenesisMolecular markersSmaller olfactory bulbsGrowth factor 2Brain subventricular zoneAnterior subventricular zoneReceptor proteinGlial fibrillary acidic proteinCell cycle kineticsStem cellsFibrillary acidic protein
2000
Basic Fibroblast Growth Factor (Fgf2) Is Necessary for Cell Proliferation and Neurogenesis in the Developing Cerebral Cortex
Raballo R, Rhee J, Lyn-Cook R, Leckman J, Schwartz M, Vaccarino F. Basic Fibroblast Growth Factor (Fgf2) Is Necessary for Cell Proliferation and Neurogenesis in the Developing Cerebral Cortex. Journal Of Neuroscience 2000, 20: 5012-5023. PMID: 10864959, PMCID: PMC6772267, DOI: 10.1523/jneurosci.20-13-05012.2000.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsApoptosisCell DivisionCerebral CortexChoroid PlexusEmbryonic and Fetal DevelopmentFibroblast Growth Factor 2Gene Expression Regulation, DevelopmentalGerm-Line MutationGestational AgeMiceMice, KnockoutProsencephalonReceptor Protein-Tyrosine KinasesReceptor, Fibroblast Growth Factor, Type 1Receptors, Fibroblast Growth FactorTelencephalonConceptsFgf2 knockout micePseudostratified ventricular epitheliumKnockout miceCerebral cortexCortical neuronsFrontal cerebral cortexDeep cortical layersBasic fibroblast growth factorEnd of neurogenesisCortical neuron numberNeuronal progenitor cellsNull mutant miceBasic fibroblast growth factor (bFGF) geneFibroblast growth factorDegree of apoptosisLarge neuronsBasal gangliaCortical layersFgf2 knockoutGrowth factor geneMutant miceVentricular epitheliumGermline mutationsNeuron numberNeurogenesis
1999
Progressive impairment of developing neuroendocrine cell lineages in the hypothalamus of mice lacking the Orthopedia gene
Acampora D, Postiglione M, Avantaggiato V, Di Bonito M, Vaccarino F, Michaud J, Simeone A. Progressive impairment of developing neuroendocrine cell lineages in the hypothalamus of mice lacking the Orthopedia gene. Genes & Development 1999, 13: 2787-2800. PMID: 10557207, PMCID: PMC317121, DOI: 10.1101/gad.13.21.2787.Peer-Reviewed Original ResearchConceptsCorticotropin-releasing hormoneAnterior periventricularProgressive impairmentArginine vasopressinHypothalamus of miceTerminal differentiationNeuroendocrine cell lineagesCell lineagesNeuronal cell lineagesMagnocellular neuronsNeuroendocrine hypothalamusAbnormal cell migrationParaventricularCell proliferationHypothalamusCell migrationMiceBRN2 expressionNeuronsImpairmentOxytocinPeriventricularDifferentiation
1997
Dlx-2 homeobox gene controls neuronal differentiation in primary cultures of developing basal ganglia
Ding M, Robel L, James A, Eisenstat D, Leckman J, Rubenstein J, Vaccarino F. Dlx-2 homeobox gene controls neuronal differentiation in primary cultures of developing basal ganglia. Journal Of Molecular Neuroscience 1997, 8: 93-113. PMID: 9188040, DOI: 10.1007/bf02736776.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntibody SpecificityAntisense Elements (Genetics)Basal GangliaCell DifferentiationCell DivisionCells, CulturedCytoskeletal ProteinsDNA-Binding ProteinsFemaleGene Expression Regulation, DevelopmentalGenes, HomeoboxHomeodomain ProteinsIn Situ HybridizationMicrotubule-Associated ProteinsNeuritesNeuronsPhenotypePregnancyRatsRhombencephalonRNA-Binding ProteinsTelencephalonTranscription FactorsConceptsGene productsNeuronal differentiationMicrotubule-associated protein MAP1BHomeodomain-containing genesDlx-2Homeobox genesNeuronal polarityCellular phenotypesNeuronal lineageProtein MAP1BPrimary culturesCellular localizationMitotic cycleGlial fibrillary acidic proteinGenesProteinCell proliferationDendrite outgrowthExpression of MAP2MAP2-positive dendritesNeuronal dendritesNeurofilament subunitsExpressionMAP2 expressionMRNA
1995
Basic Fibroblast Growth Factor Increases the Number of Excitatory Neurons Containing Glutamate in the Cerebral Cortex
Vaccarino F, Schwartz M, Hartigan D, Leckman J. Basic Fibroblast Growth Factor Increases the Number of Excitatory Neurons Containing Glutamate in the Cerebral Cortex. Cerebral Cortex 1995, 5: 64-78. PMID: 7719131, DOI: 10.1093/cercor/5.1.64.Peer-Reviewed Original ResearchConceptsBasic fibroblast growth factorNerve growth factorGlutamate-containing neuronsCerebral cortexFibroblast growth factorGrowth factorAspartate-containing neuronsDifferent neurotransmitter phenotypesNumber of GABARatio of glutamateStem cellsNeurotransmitter phenotypeExcitatory neuronsInhibitory neuronsRat telencephalonVentricular zoneBFGF mRNAGABANeuronsCortexGlutamateDiffusible factorsThreefold increaseCellsFactors