2024
Single-cell transcriptomic atlas reveals increased regeneration in diseased human inner ear balance organs
Wang T, Ling A, Billings S, Hosseini D, Vaisbuch Y, Kim G, Atkinson P, Sayyid Z, Aaron K, Wagh D, Pham N, Scheibinger M, Zhou R, Ishiyama A, Moore L, Maria P, Blevins N, Jackler R, Alyono J, Kveton J, Navaratnam D, Heller S, Lopez I, Grillet N, Jan T, Cheng A. Single-cell transcriptomic atlas reveals increased regeneration in diseased human inner ear balance organs. Nature Communications 2024, 15: 4833. PMID: 38844821, PMCID: PMC11156867, DOI: 10.1038/s41467-024-48491-y.Peer-Reviewed Original ResearchConceptsSingle-cell transcriptome atlasInner ear hair cell lossNon-sensory cell typesCell regeneration in vivoVestibular schwannoma patientsTranscriptomic atlasHair cellsHair cell lossIGF-1 signalingHuman inner earMouse hair cellsCell trajectory analysisSchwannoma patientsDynamic gene expressionVestibular hair cellsPermanent hearingHair cell precursorsIGF-1Cell lossCell precursorsInner earRegenerative capacityMurine utriclesCell typesGene expression
2017
Prestin: Molecular Mechanisms Underlying Outer Hair Cell Electromotility
Santos-Sacchi J, Navaratnam D, Raphael R, Oliver D. Prestin: Molecular Mechanisms Underlying Outer Hair Cell Electromotility. Springer Handbook Of Auditory Research 2017, 62: 113-145. DOI: 10.1007/978-3-319-52073-5_5.Peer-Reviewed Original ResearchOuter hair cellsMammalian inner earOuter Hair Cell ElectromotilityHair cell electromotilitySLC26 familyMolecular mechanismsMembrane lipidsConformational changesMechanical feedback mechanismMolecular motorsTension sensitivityPrestinHair cellsVoltage-sensor charge movementAnion transportersReceptor potentialProteinMolecular conformational changesInner earStructural determinationIntracellular chlorideCharge movementTraffickingFeedback mechanismMechanism
2007
Developmental Expression of the Outer Hair Cell Motor Prestin in the Mouse
Abe T, Kakehata S, Kitani R, Maruya S, Navaratnam D, Santos-Sacchi J, Shinkawa H. Developmental Expression of the Outer Hair Cell Motor Prestin in the Mouse. The Journal Of Membrane Biology 2007, 215: 49-56. PMID: 17415610, PMCID: PMC4154540, DOI: 10.1007/s00232-007-9004-5.Peer-Reviewed Original ResearchConceptsLateral membranesOuter hair cellsMouse outer hair cellsMotor protein activitySteady-state levelsKnockout experimentsProtein activityDevelopmental expressionMembrane tensionGenetic modificationConformational fluctuationsCellular mechanismsMotor moleculesMolecular motorsOnset of hearingMorphological estimatesProtein densityEarly maturationQuantitative polymerase chain reactionHair cellsVpkCmDevelopmental dataCochlear amplificationMaturationFull maturation
2006
Hair Cells – Beyond the Transducer
Housley GD, Marcotti W, Navaratnam D, Yamoah EN. Hair Cells – Beyond the Transducer. The Journal Of Membrane Biology 2006, 209: 89. PMID: 16773496, DOI: 10.1007/s00232-005-0835-7.BooksConceptsHair cell developmentHair cellsHair cell physiologySensory hair cellsOuter hair cell electromotilityMolecular physiologyHair cell electromotilityCell physiologyCell developmentPhysiological functionsMechanoelectrical transductionIon channelsBiophysical statusCell functionTransductionNeurotransmitter releaseHair cell functionPhysiologyCellsConsiderable arrayBroad dynamic rangeReview seriesMembrane conductanceElectromotilityPathway
2000
Molecular Determinants of Hair Cell Phenotypic Heterogeneity—Differential Expression of K Channel Genes
Navaratnam D, Oberholtzer J. Molecular Determinants of Hair Cell Phenotypic Heterogeneity—Differential Expression of K Channel Genes. 2000, 55-68. DOI: 10.1007/978-1-4615-4223-0_4.Peer-Reviewed Original ResearchChannel genesGene expressionAuditory receptor epitheliumAdditional gene productsK channel genesBK channel variantsLevel of transcriptionHair cellsPotassium channel genesRNA processingAlternative splicingSingle geneGene productsReceptor hair cellsReceptor epitheliumExpression patternsComplex patternsGenesMolecular determinantsChannel variantsLarge familyChick basilar papillaPhenotypic heterogeneityBasilar papillaChannel isoforms
1997
Differential Distribution of Ca2+-Activated K+ Channel Splice Variants among Hair Cells along the Tonotopic Axis of the Chick Cochlea
Navaratnam D, Bell T, Tu T, Cohen E, Oberholtzer J. Differential Distribution of Ca2+-Activated K+ Channel Splice Variants among Hair Cells along the Tonotopic Axis of the Chick Cochlea. Neuron 1997, 19: 1077-1085. PMID: 9390520, DOI: 10.1016/s0896-6273(00)80398-0.Peer-Reviewed Original Research
1996
Proliferation in the auditory receptor epithelium mediated by a cyclic AMP–dependent signaling pathway
Navaratnam D, Su H, Scott S, Oberholtzer J. Proliferation in the auditory receptor epithelium mediated by a cyclic AMP–dependent signaling pathway. Nature Medicine 1996, 2: 1136-1139. PMID: 8837614, DOI: 10.1038/nm1096-1136.Peer-Reviewed Original ResearchMeSH Keywords1-Methyl-3-isobutylxanthine8-Bromo Cyclic Adenosine MonophosphateAnimalsCarbazolesChickensCochleaColforsinCyclic AMPCyclic AMP-Dependent Protein KinasesDNA ReplicationEnzyme ActivationEnzyme InhibitorsGentamicinsHair Cells, AuditoryHearing Loss, SensorineuralIndolesIsoquinolinesOrgan Culture TechniquesPyrrolesRegenerationSignal TransductionSulfonamidesConceptsAuditory receptor epitheliumProtein kinase AHair cellsReplacement hair cellsReceptor epitheliumNew hair cellsProliferative responseRegenerative proliferationReceptor hair cellsKinase ASignaling pathwaysPKA inhibitorGentamicin damageCellular recoveryCyclic AMP levelsCell populationsFunctional recoveryBacterial insultPathwayProliferation markersProliferationAMP levelsCellsEpitheliumIntense sound
1995
Permeation Properties and Differential Expression across the Auditory Receptor Epithelium of an Inward Rectifier K+ Channel Cloned from the Chick Inner Ear *
Navaratnam D, Escobar L, Covarrubias M, Oberholtzer J. Permeation Properties and Differential Expression across the Auditory Receptor Epithelium of an Inward Rectifier K+ Channel Cloned from the Chick Inner Ear *. Journal Of Biological Chemistry 1995, 270: 19238-19245. PMID: 7642595, DOI: 10.1074/jbc.270.33.19238.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsBariumBase SequenceBasilar MembraneChickensCloning, MolecularDNA, ComplementaryEpitheliumEvoked PotentialsGene Expression RegulationGlutamic AcidHair Cells, AuditoryMolecular Sequence DataPotassium Channel BlockersPotassium ChannelsPotassium Channels, Inwardly RectifyingSequence Homology, Amino AcidXenopusConceptsAuditory receptor epitheliumDifferential expressionSingle-channel conductanceExcellent model systemSite-directed mutagenesisPutative pore regionIon channel genesInward rectifier potassium channelChick inner earCochlear sensory epitheliumReceptor epitheliumChick cochlear hair cellsChannel genesPrimary structureCochlear hair cellsNative channelsRectifier potassium channelSensory epitheliumExternal vestibulePore regionModel systemHair cellsPotassium channelsExpressionInward rectifier potassium current