2024
Alterations in Volume and Intrinsic Resting-State Functional Connectivity Detected at Brain MRI in Individuals with Opioid Use Disorder.
Mehta S, Peterson H, Ye J, Ibrahim A, Saeed G, Linsky S, Kreinin I, Tsang S, Nwanaji-Enwerem U, Raso A, Arora J, Tokoglu F, Yip S, Hahn C, Lacadie C, Greene A, Jeon S, Constable R, Barry D, Redeker N, Yaggi H, Scheinost D, Weintraub E. Alterations in Volume and Intrinsic Resting-State Functional Connectivity Detected at Brain MRI in Individuals with Opioid Use Disorder. Radiology 2024, 313: e240514. PMID: 39656127, DOI: 10.1148/radiol.240514.Peer-Reviewed Original ResearchConceptsHealthy control participantsRight medial temporal lobeOpioid use disorderFunctional brain alterationsMedial temporal lobeOpioid use disorder groupFunctional connectivityUse disorderControl participantsBrain alterationsIntrinsic resting-state functional connectivityTemporal lobeMedial prefrontal cortex volumesVoxel-wise linear regressionT1-weighted MRIResting-state functional connectivityFamily-wise error correctionPrefrontal cortex volumeResting-state functional MRIIncreased functional connectivityIntrinsic connectivity distributionFunctional MRI studiesFemale participantsRegional brain volumesAssess group differencesBrain age prediction and deviations from normative trajectories in the neonatal connectome
Sun H, Mehta S, Khaitova M, Cheng B, Hao X, Spann M, Scheinost D. Brain age prediction and deviations from normative trajectories in the neonatal connectome. Nature Communications 2024, 15: 10251. PMID: 39592647, PMCID: PMC11599754, DOI: 10.1038/s41467-024-54657-5.Peer-Reviewed Original ResearchConceptsPostmenstrual agePerinatal periodBrain age predictionFunctional connectomeMonths of postnatal lifeMonths of lifePreterm infantsNormative trajectoryConnectome-based predictive modelingThird trimesterPerinatal exposureBrain age gapPostnatal lifeResting-state fMRIInfantsHuman Connectome ProjectNeonatal connectomeDevelopmental trajectoriesBrainBehavioral outcomesNormative dataMonthsConnectome ProjectDTI dataConnectomePrediction of craving across studies: A commentary on conceptual and methodological considerations when using data-driven methods
Antons S, Yip S, Lacadie C, Dadashkarimi J, Scheinost D, Brand M, Potenza M. Prediction of craving across studies: A commentary on conceptual and methodological considerations when using data-driven methods. Journal Of Behavioral Addictions 2024, 13: 695-701. PMID: 39356557, PMCID: PMC11457034, DOI: 10.1556/2006.2024.00050.Peer-Reviewed Original ResearchConceptsAddictive behaviorsDisorders due to addictive behaviorsConnectome-based predictive modelingPrediction of cravingInvestigate neural mechanismsSubstance use disordersNeural mechanismsCravingSubstance useMethodological considerationsDisordersMethodological featuresBehaviorConceptualizationCommentaryStudyFindingsSubstancesThe brain structure, inflammatory, and genetic mechanisms mediate the association between physical frailty and depression
Jiang R, Noble S, Rosenblatt M, Dai W, Ye J, Liu S, Qi S, Calhoun V, Sui J, Scheinost D. The brain structure, inflammatory, and genetic mechanisms mediate the association between physical frailty and depression. Nature Communications 2024, 15: 4411. PMID: 38782943, PMCID: PMC11116547, DOI: 10.1038/s41467-024-48827-8.Peer-Reviewed Original ResearchConceptsIncident depressionPre-frailPhysical frailtyFrail individualsPopulation attributable fraction analysisRisk factors of depressionMendelian randomization analysisFactors of depressionPotential causal effectModifiable risk factorsNon-frail individualsCross-sectional studyEffect of frailtyHigher disease burdenUK BiobankRandomization analysisBrain volumeDepression casesDisease burdenFrailtyRegional brain volumesIncreased riskDepressionHigh riskFollow-upData leakage inflates prediction performance in connectome-based machine learning models
Rosenblatt M, Tejavibulya L, Jiang R, Noble S, Scheinost D. Data leakage inflates prediction performance in connectome-based machine learning models. Nature Communications 2024, 15: 1829. PMID: 38418819, PMCID: PMC10901797, DOI: 10.1038/s41467-024-46150-w.Peer-Reviewed Original Research
2023
The effects of experience of discrimination and acculturation during pregnancy on the developing offspring brain
Spann M, Alleyne K, Holland C, Davids A, Pierre-Louis A, Bang C, Oyeneye V, Kiflom R, Shea E, Cheng B, Peterson B, Monk C, Scheinost D. The effects of experience of discrimination and acculturation during pregnancy on the developing offspring brain. Neuropsychopharmacology 2023, 49: 476-485. PMID: 37968451, PMCID: PMC10724278, DOI: 10.1038/s41386-023-01765-3.Peer-Reviewed Original ResearchNetwork controllability of structural connectomes in the neonatal brain
Sun H, Jiang R, Dai W, Dufford A, Noble S, Spann M, Gu S, Scheinost D. Network controllability of structural connectomes in the neonatal brain. Nature Communications 2023, 14: 5820. PMID: 37726267, PMCID: PMC10509217, DOI: 10.1038/s41467-023-41499-w.Peer-Reviewed Original ResearchTest-Retest Reliability of Functional Connectivity in Adolescents With Depression
Camp C, Noble S, Scheinost D, Stringaris A, Nielson D. Test-Retest Reliability of Functional Connectivity in Adolescents With Depression. Biological Psychiatry Cognitive Neuroscience And Neuroimaging 2023, 9: 21-29. PMID: 37734478, PMCID: PMC10843837, DOI: 10.1016/j.bpsc.2023.09.002.Peer-Reviewed Original ResearchConceptsMajor depressive disorderIntraclass correlation coefficientTest-retest reliabilityPsychiatric illnessFunctional connectivityMean intraclass correlation coefficientFunctional magnetic resonance imagingMagnetic resonance imagingAverage intraclass correlation coefficientEffect sizeDepressive disorderLongitudinal cohortHealthy individualsMultivariate analysisResonance imagingSymptom severityReproducible biomarkersBrain-behavior associationsGroup differencesDepressionHealthy samplesCorrelation coefficientIllnessAdolescentsBiomarker identificationThe challenges and prospects of brain-based prediction of behaviour
Wu J, Li J, Eickhoff S, Scheinost D, Genon S. The challenges and prospects of brain-based prediction of behaviour. Nature Human Behaviour 2023, 7: 1255-1264. PMID: 37524932, DOI: 10.1038/s41562-023-01670-1.Peer-Reviewed Original ResearchConceptsInterindividual differencesIndividual brain patternsNeural correlatesBehavioral measuresBrain patternsSystems neuroscienceConceptual limitationsLarge open datasetData-driven fashionNeuroscienceBrain levelsComputational resourcesOpen datasetsPredictive modelling approachCorrelatesMindBehaviorMeasuresPredictive modellingModelling approachDifferencesPotential solutionsImpact of postnatal weight gain on brain white matter maturation in very preterm infants
Bobba P, Weber C, Higaki A, Mukherjee P, Scheinost D, Constable R, Ment L, Taylor S, Payabvash S. Impact of postnatal weight gain on brain white matter maturation in very preterm infants. Journal Of Neuroimaging 2023, 33: 991-1002. PMID: 37483073, PMCID: PMC10800683, DOI: 10.1111/jon.13145.Peer-Reviewed Original ResearchConceptsBirth weight z-scoreMagnetic resonance imagingVery preterm infantsPostnatal weight gainWeight z-scoreWhite matter maturationBirth weightDiffusion tensor imagingNeurological outcomePreterm infantsGestational ageWeight gainCorpus callosumHigher birth weight z-scoresBrain white matter maturationLong-term neurological deficitsZ-scoreBrain developmentWeight z-score changeWM tractsZ-score changeWM maturationWeeks of lifeNeurological deficitsNutritional interventionElevated C-reactive protein mediates the liver-brain axis: a preliminary study
Jiang R, Wu J, Rosenblatt M, Dai W, Rodriguez R, Sui J, Qi S, Liang Q, Xu B, Meng Q, Calhoun V, Scheinost D. Elevated C-reactive protein mediates the liver-brain axis: a preliminary study. EBioMedicine 2023, 93: 104679. PMID: 37356206, PMCID: PMC10320521, DOI: 10.1016/j.ebiom.2023.104679.Peer-Reviewed Original ResearchConceptsRegional gray matter volumeGray matter volumeCognitive functioningMost cognitive measuresUnderlying neurobiological factorsEffect sizeLarge effect sizesProspective memoryVisual memoryCognitive measuresExecutive functionTrail MakingCognitive performanceNeurobiological factorsSmall effect sizesProcessing speedVentral striatumParahippocampal gyrusCognitive declineCognitive impairmentMatter volumeMemoryFunctioningCross-sectional associationsLimited researchCross Atlas Remapping via Optimal Transport (CAROT): Creating connectomes for different atlases when raw data is not available
Dadashkarimi J, Karbasi A, Liang Q, Rosenblatt M, Noble S, Foster M, Rodriguez R, Adkinson B, Ye J, Sun H, Camp C, Farruggia M, Tejavibulya L, Dai W, Jiang R, Pollatou A, Scheinost D. Cross Atlas Remapping via Optimal Transport (CAROT): Creating connectomes for different atlases when raw data is not available. Medical Image Analysis 2023, 88: 102864. PMID: 37352650, PMCID: PMC10526726, DOI: 10.1016/j.media.2023.102864.Peer-Reviewed Original ResearchConceptsDifferent atlasesRaw data accessWeb applicationData accessOpen source dataSource codePatient privacyOptimal transportRaw dataStorage concernsLarge-scale data collection effortsOriginal counterpartsExtensive setData collection effortsProcessing effortPredictive modelNeuroimaging dataDownstream analysisPrivacyAtlasesCollection effortsComputationalTime seriesDatasetConnectomeConnectome-based prediction of craving in gambling disorder and cocaine use disorder
Antons S, Yip S, Lacadie C, Dadashkarimi J, Scheinost D, Brand M, Potenza M. Connectome-based prediction of craving in gambling disorder and cocaine use disorder. Dialogues In Clinical Neuroscience 2023, 25: 33-42. PMID: 37190759, PMCID: PMC10190201, DOI: 10.1080/19585969.2023.2208586.Peer-Reviewed Original ResearchConceptsCocaine use disorderGambling disorderBehavioral addictionsCue-reactivity taskComponents of memoryGeneral neural mechanismCommon neural networkFunctional magnetic resonanceMedial frontal regionsDefault mode networkFeatures of addictionAutobiographical memoryValence ratingsMeta-analytic dataPrefrontal regionsNeural mechanismsPrefrontal cortexFronto-parietalFrontal regionsMotor imageryMotor/Diverse sampleLimbic networkNeural connectivityCravingWhy is everyone talking about brain state?
Greene A, Horien C, Barson D, Scheinost D, Constable R. Why is everyone talking about brain state? Trends In Neurosciences 2023, 46: 508-524. PMID: 37164869, PMCID: PMC10330476, DOI: 10.1016/j.tins.2023.04.001.Peer-Reviewed Original ResearchAssociations of physical frailty with health outcomes and brain structure in 483 033 middle-aged and older adults: a population-based study from the UK Biobank
Jiang R, Noble S, Sui J, Yoo K, Rosenblatt M, Horien C, Qi S, Liang Q, Sun H, Calhoun V, Scheinost D. Associations of physical frailty with health outcomes and brain structure in 483 033 middle-aged and older adults: a population-based study from the UK Biobank. The Lancet Digital Health 2023, 5: e350-e359. PMID: 37061351, PMCID: PMC10257912, DOI: 10.1016/s2589-7500(23)00043-2.Peer-Reviewed Original ResearchConceptsPopulation-based studyPhysical frailtyHealth-related outcomesBrain structuresMental healthHealth outcomesHealth measuresTotal white matter hyperintensitiesIndicators of frailtySeverity of frailtyLower gray matter volumePoor physical fitnessWhite matter hyperintensitiesGray matter volumeUK BiobankHealth-related measuresPoor mental healthMental health measuresDirection of associationMatter hyperintensitiesUnhealthy lifestyleEarly-life risksPsychiatric disordersNumerous confoundersPreventative strategiesAltered Brain Dynamics Across Bipolar Disorder and Schizophrenia During Rest and Task Switching Revealed by Overlapping Brain States
Ye J, Sun H, Gao S, Dadashkarimi J, Rosenblatt M, Rodriguez R, Mehta S, Jiang R, Noble S, Westwater M, Scheinost D. Altered Brain Dynamics Across Bipolar Disorder and Schizophrenia During Rest and Task Switching Revealed by Overlapping Brain States. Biological Psychiatry 2023, 94: 580-590. PMID: 37031780, PMCID: PMC10524212, DOI: 10.1016/j.biopsych.2023.03.024.Peer-Reviewed Original ResearchConceptsAberrant brain dynamicsMultiple brain statesBipolar disorderTask-based functional magnetic resonanceFunctional magnetic resonanceAltered brain dynamicsBrain statesTask-based functional magnetic resonance imagingFunctional magnetic resonance imagingMagnetic resonance imagingHealthy control participantsBrain dynamicsSignificant group differencesMagnetic resonanceMultivariate analysisResonance imagingSchizophreniaTime pointsControl participantsGroup differencesNeural mechanismsOlder participantsPreliminary evidenceDynamic alterationsDisordersTransdiagnostic Connectome-Based Prediction of Craving
Garrison K, Sinha R, Potenza M, Gao S, Liang Q, Lacadie C, Scheinost D. Transdiagnostic Connectome-Based Prediction of Craving. American Journal Of Psychiatry 2023, 180: 445-453. PMID: 36987598, DOI: 10.1176/appi.ajp.21121207.Peer-Reviewed Original ResearchConceptsConnectome-based predictive modelingImagery conditionFunctional connectomeSelf-reported cravingStudy of motivationDefault mode networkFunctional connectivity dataIndependent samplesKey phenomenological featuresNeural signaturesTransdiagnostic sampleTransdiagnostic perspectiveMode networkMotivated behaviorCentral constructAddictive disordersHuman behaviorConnectivity dataPhenomenological featuresStrongest predictorCravingTaskSubstance use-related disordersConnectomeIndividuals
2022
Sex differences in default mode network connectivity in healthy aging adults
Ficek-Tani B, Horien C, Ju S, Xu W, Li N, Lacadie C, Shen X, Scheinost D, Constable T, Fredericks C. Sex differences in default mode network connectivity in healthy aging adults. Cerebral Cortex 2022, 33: 6139-6151. PMID: 36563018, PMCID: PMC10183749, DOI: 10.1093/cercor/bhac491.Peer-Reviewed Original ResearchConceptsDefault mode networkPreclinical Alzheimer's diseaseAlzheimer's diseaseSex differencesBrain connectivity changesDefault mode network connectivityIntrinsic connectivity distributionSeed-based analysisMode network connectivityMedial prefrontal cortexPosterior DMN nodesHealthy aging adultsImpact of sexLifetime riskDMN connectivityWhole brainPosterior cingulateDMN nodesSignificant sex differencesPrefrontal cortexConnectivity changesAging AdultsHealthy participantsDMN functionMode networkLeveraging edge-centric networks complements existing network-level inference for functional connectomes
Rodriguez R, Noble S, Tejavibulya L, Scheinost D. Leveraging edge-centric networks complements existing network-level inference for functional connectomes. NeuroImage 2022, 264: 119742. PMID: 36368501, PMCID: PMC9838718, DOI: 10.1016/j.neuroimage.2022.119742.Peer-Reviewed Original ResearchMachine Learning and Prediction in Fetal, Infant, and Toddler Neuroimaging: A Review and Primer
Scheinost D, Pollatou A, Dufford A, Jiang R, Farruggia M, Rosenblatt M, Peterson H, Rodriguez R, Dadashkarimi J, Liang Q, Dai W, Foster M, Camp C, Tejavibulya L, Adkinson B, Sun H, Ye J, Cheng Q, Spann M, Rolison M, Noble S, Westwater M. Machine Learning and Prediction in Fetal, Infant, and Toddler Neuroimaging: A Review and Primer. Biological Psychiatry 2022, 93: 893-904. PMID: 36759257, PMCID: PMC10259670, DOI: 10.1016/j.biopsych.2022.10.014.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus Statements