2024
Transgenerational transmission of post-zygotic mutations suggests symmetric contribution of first two blastomeres to human germline
Jang Y, Tomasini L, Bae T, Szekely A, Vaccarino F, Abyzov A. Transgenerational transmission of post-zygotic mutations suggests symmetric contribution of first two blastomeres to human germline. Nature Communications 2024, 15: 9117. PMID: 39438473, PMCID: PMC11496613, DOI: 10.1038/s41467-024-53485-x.Peer-Reviewed Original ResearchMeSH KeywordsAdultBlastomeresCell LineageFemaleGerm CellsGerm-Line MutationHumansMaleMutationPedigreeZygote
2023
Efficient reconstruction of cell lineage trees for cell ancestry and cancer
Jang Y, Fasching L, Bae T, Tomasini L, Schreiner J, Szekely A, Fernandez T, Leckman J, Vaccarino F, Abyzov A. Efficient reconstruction of cell lineage trees for cell ancestry and cancer. Nucleic Acids Research 2023, 51: e57-e57. PMID: 37026484, PMCID: PMC10250207, DOI: 10.1093/nar/gkad254.Peer-Reviewed Original ResearchConceptsLineage treesCell ancestryCell lineage treesFirst cell divisionStem cell linesPluripotent stem cell lineLineage reconstructionInduced pluripotent stem cell lineCell divisionCancer progressionLineage representationCell linesMosaic mutationsHuman skin fibroblastsTreesMutationsAncestrySkin fibroblastsMultiple cellsGenomeLineagesZygotesLinesFibroblastsCells
2021
Early developmental asymmetries in cell lineage trees in living individuals
Fasching L, Jang Y, Tomasi S, Schreiner J, Tomasini L, Brady MV, Bae T, Sarangi V, Vasmatzis N, Wang Y, Szekely A, Fernandez TV, Leckman JF, Abyzov A, Vaccarino FM. Early developmental asymmetries in cell lineage trees in living individuals. Science 2021, 371: 1245-1248. PMID: 33737484, PMCID: PMC8324008, DOI: 10.1126/science.abe0981.Peer-Reviewed Original Research
2020
Cell Lineage Tracing and Cellular Diversity in Humans
Abyzov A, Vaccarino FM. Cell Lineage Tracing and Cellular Diversity in Humans. Annual Review Of Genomics And Human Genetics 2020, 21: 101-116. PMID: 32413272, DOI: 10.1146/annurev-genom-083118-015241.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsLineage tracingLineage mapCell lineage mapCell lineage tracingDNA methylation statusComplex biological processesMultiple cell typesMulticellular organismsCellular diversityMitochondrial DNALineage hierarchyCell lineagesBiological processesNatural variationCell typesMethylation statusLineagesNoncancerous cellsRecent studiesFetal developmentGeneral conceptual designCellsOrganismsHumansDNA
2017
Different mutational rates and mechanisms in human cells at pregastrulation and neurogenesis
Bae T, Tomasini L, Mariani J, Zhou B, Roychowdhury T, Franjic D, Pletikos M, Pattni R, Chen BJ, Venturini E, Riley-Gillis B, Sestan N, Urban AE, Abyzov A, Vaccarino FM. Different mutational rates and mechanisms in human cells at pregastrulation and neurogenesis. Science 2017, 359: 550-555. PMID: 29217587, PMCID: PMC6311130, DOI: 10.1126/science.aan8690.Peer-Reviewed Original ResearchConceptsSingle nucleotide variationsMutation rateCancer cell genomeClonal cell populationsCell genomeCell lineagesBackground mutagenesisHuman cellsMutational rateSomatic mosaicismSingle cellsOxidative damageGenomeMutagenesisCell populationsMutation spectrumNeurogenesisCellsHuman fetusesIndividual neuronsLineagesPregastrulationHuman brainBrainMutations
2010
Astroglial cells in the external granular layer are precursors of cerebellar granule neurons in neonates
Silbereis J, Heintz T, Taylor MM, Ganat Y, Ment LR, Bordey A, Vaccarino F. Astroglial cells in the external granular layer are precursors of cerebellar granule neurons in neonates. Molecular And Cellular Neuroscience 2010, 44: 362-373. PMID: 20470892, PMCID: PMC2900521, DOI: 10.1016/j.mcn.2010.05.001.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnimals, NewbornAstrocytesBasic Helix-Loop-Helix Transcription FactorsBeta-GalactosidaseCell LineageCerebellumGenes, ReporterGlial Fibrillary Acidic ProteinGreen Fluorescent ProteinsIntegrasesMiceMice, Inbred C57BLMice, TransgenicNeurogenesisNeuronsPromoter Regions, GeneticStem CellsTime FactorsConceptsExternal granule cell layerGranule cell precursorsInternal granule cell layerGranule cell layerGranule cellsRhombic lipAstroglial cellsProtein expression profilesGlial fibrillary acidic protein promoterCerebellar granule cell precursorsHuman glial fibrillary acidic protein promoterEmbryonic rhombic lipInducible Cre recombinaseNeuronal progenitor cellsReporter proteinFirst postnatal weekNeural stem cell markersLate embryogenesisCellular plasticityImmature granule cellsEarly postnatal developmentCell layerReporter geneCerebellar granule neuronsStem cell markers
2009
Precursors with Glial Fibrillary Acidic Protein Promoter Activity Transiently Generate GABA Interneurons in the Postnatal Cerebellum
Silbereis J, Cheng E, Ganat YM, Ment LR, Vaccarino FM. Precursors with Glial Fibrillary Acidic Protein Promoter Activity Transiently Generate GABA Interneurons in the Postnatal Cerebellum. Stem Cells 2009, 27: 1152-1163. PMID: 19418461, PMCID: PMC2903623, DOI: 10.1002/stem.18.Peer-Reviewed Original ResearchConceptsCerebellar white matterWhite matterGFAP/Inducible Cre recombinationMolecular layerGlial cell typesNSC/NPCsGABA interneuronsGFAP promoter activityGAD-67GABAergic interneuronsGlial cellsIntact cerebellumNeurogenic potentialCerebellar cortexCerebellar interneuronsInhibitory factorPostnatal cerebellumInterneuronsNeural stemProgenitor cellsDifferent neuronsCerebellumCerebellar developmentCre recombination
2007
Astroglial Cells in Development, Regeneration, and Repair
Vaccarino FM, Fagel DM, Ganat Y, Maragnoli ME, Ment LR, Ohkubo Y, Schwartz ML, Silbereis J, Smith KM. Astroglial Cells in Development, Regeneration, and Repair. The Neuroscientist 2007, 13: 173-185. PMID: 17404377, DOI: 10.1177/1073858406298336.Peer-Reviewed Original Research In PressConceptsFibroblast growth factor receptorAstroglial cellsGenetic fate mappingCell divisionLineage studiesGrowth factor receptorPostnatal CNSEmbryonic CNSMain cellular componentsFate mappingNeuronal differentiationCellular componentsCell typesInjury-induced increaseFactor receptorNeurogenic nichePerinatal injuryCerebral cortexYoung miceCellsOligodendrocytesNeuronsDifferent rolesCNSNiche
2006
Early Postnatal Astroglial Cells Produce Multilineage Precursors and Neural Stem Cells In Vivo
Ganat YM, Silbereis J, Cave C, Ngu H, Anderson GM, Ohkubo Y, Ment LR, Vaccarino FM. Early Postnatal Astroglial Cells Produce Multilineage Precursors and Neural Stem Cells In Vivo. Journal Of Neuroscience 2006, 26: 8609-8621. PMID: 16914687, PMCID: PMC6674357, DOI: 10.1523/jneurosci.2532-06.2006.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnimals, NewbornAstrocytesBrainCell DifferentiationCell LineageCerebral VentriclesDoublecortin ProteinFemaleGlial Fibrillary Acidic ProteinHumansIntegrasesMaleMiceMice, TransgenicNeuronsOlfactory BulbOligodendrogliaPromoter Regions, GeneticRecombination, GeneticStem CellsTransgenesConceptsDentate gyrusHuman GFAP promoterCerebral cortexAstroglial cellsSubventricular zoneOlfactory bulbPostnatal brainNeural progenitor/stem cellsPostnatal day 5First postnatal weekProgenitor/stem cellsStem cellsInducible Cre recombinaseNeural stem cellsGenetic fate mappingMature neuronsPostnatal weekCNS regionsWhite matterDay 5GFAP promoterNeural precursorsCortexNeuronsCre recombinase
2004
Fibroblast Growth Factor Receptor 1 Is Required for the Proliferation of Hippocampal Progenitor Cells and for Hippocampal Growth in Mouse
Ohkubo Y, Uchida AO, Shin D, Partanen J, Vaccarino FM. Fibroblast Growth Factor Receptor 1 Is Required for the Proliferation of Hippocampal Progenitor Cells and for Hippocampal Growth in Mouse. Journal Of Neuroscience 2004, 24: 6057-6069. PMID: 15240797, PMCID: PMC6729672, DOI: 10.1523/jneurosci.1140-04.2004.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntigens, DifferentiationCell CountCell LineageCell ProliferationCells, CulturedHeredodegenerative Disorders, Nervous SystemHippocampusHumansIn Situ HybridizationLateral VentriclesMiceMice, TransgenicMutagenesis, Site-DirectedNeurogliaNeuronsPyramidal CellsReceptor Protein-Tyrosine KinasesReceptor, Fibroblast Growth Factor, Type 1Receptors, Fibroblast Growth FactorRNA, MessengerStem CellsTransgenesConceptsHippocampal ventricular zonesDentate gyrusGrowth factor receptor 1Fibroblast growth factor receptor 1Factor receptor 1Ventricular zoneNeural stem cellsPyramidal neuronsHippocampal growthProgenitor cellsGranule cellsReceptor 1Glial fibrillary acidic protein promoterHuman glial fibrillary acidic protein promoterEmbryonic dorsal telencephalonRadial glial-like cellsRadial glial progenitor cellsHippocampal dentate gyrusParvalbumin-containing interneuronsDG granule cellsHippocampal pyramidal neuronsStem cellsHippocampal progenitor cellsRole of FGFR1Glial progenitor cellsFibroblast Growth Factor 2 Is Required for Maintaining the Neural Stem Cell Pool in the Mouse Brain Subventricular Zone
Zheng W, Nowakowski RS, Vaccarino FM. Fibroblast Growth Factor 2 Is Required for Maintaining the Neural Stem Cell Pool in the Mouse Brain Subventricular Zone. Developmental Neuroscience 2004, 26: 181-196. PMID: 15711059, DOI: 10.1159/000082136.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBiomarkersBrainCell Cycle ProteinsCell DifferentiationCell DivisionCell LineageCell ProliferationCerebral CortexDown-RegulationImmunohistochemistryLateral VentriclesMiceMice, KnockoutNeurogliaNeuronsOlfactory BulbReceptor Protein-Tyrosine KinasesReceptor, Fibroblast Growth Factor, Type 2Receptors, Fibroblast Growth FactorStem CellsConceptsStem cell poolNeural stem cellsFgf2 knockout miceSlower cell cycle kineticsProgenitor cell populationsSubventricular zoneCell poolNeural stem cell poolGene productsProgenitor populationsFibroblast growth factor-2Olfactory bulbKnockout miceCell cycleOlfactory bulb neurogenesisMolecular markersSmaller olfactory bulbsGrowth factor 2Brain subventricular zoneAnterior subventricular zoneReceptor proteinGlial fibrillary acidic proteinCell cycle kineticsStem cellsFibrillary acidic protein
1999
Progressive impairment of developing neuroendocrine cell lineages in the hypothalamus of mice lacking the Orthopedia gene
Acampora D, Postiglione M, Avantaggiato V, Di Bonito M, Vaccarino F, Michaud J, Simeone A. Progressive impairment of developing neuroendocrine cell lineages in the hypothalamus of mice lacking the Orthopedia gene. Genes & Development 1999, 13: 2787-2800. PMID: 10557207, PMCID: PMC317121, DOI: 10.1101/gad.13.21.2787.Peer-Reviewed Original ResearchConceptsCorticotropin-releasing hormoneAnterior periventricularProgressive impairmentArginine vasopressinHypothalamus of miceTerminal differentiationNeuroendocrine cell lineagesCell lineagesNeuronal cell lineagesMagnocellular neuronsNeuroendocrine hypothalamusAbnormal cell migrationParaventricularCell proliferationHypothalamusCell migrationMiceBRN2 expressionNeuronsImpairmentOxytocinPeriventricularDifferentiation6 Fibroblast Growth Factor Signaling Regulates Growth and Morphogenesis at Multiple Steps during Brain Development11This work represents a collaboration between the laboratories of the first two authors.
Vaccarino F, Schwartz M, Raballo R, Rhee J, Lyn-Cook R. 6 Fibroblast Growth Factor Signaling Regulates Growth and Morphogenesis at Multiple Steps during Brain Development11This work represents a collaboration between the laboratories of the first two authors. Current Topics In Developmental Biology 1999, 46: 179-200. PMID: 10417880, DOI: 10.1016/s0070-2153(08)60329-4.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsCentral nervous system regionsNervous system regionsCentral nervous systemRole of FGF2Growth factor familyCerebral cortexFibroblast growth factor (FGF) familyCortical developmentNervous systemFibroblast growth factor (FGF) signalingGrowth factor signalingSystem regionsFactor signalingMolecular mechanismsCoordinated activationDistinct patternsTarget genesFGF2FGFFactor familyCortex