2024
Spatiotemporal control of subcellular O-GlcNAc signaling using Opto-OGT
Ong Q, Lim L, Goh C, Liao Y, Chan S, Lim C, Kam V, Yap J, Tseng T, Desrouleaux R, Wang L, Ler S, Lim S, Kim S, Sobota R, Bennett A, Han W, Yang X. Spatiotemporal control of subcellular O-GlcNAc signaling using Opto-OGT. Nature Chemical Biology 2024, 1-9. PMID: 39543398, DOI: 10.1038/s41589-024-01770-7.Peer-Reviewed Original ResearchO-GlcNAc transferaseO-GlcNAcLocalized to specific subcellular sitesResponse to insulin stimulationPost-translational modification of intracellular proteinsModification of intracellular proteinsO-GlcNAc signalingPost-translational modificationsTargeting O-GlcNAc transferaseSpatiotemporal controlMulticellular organismsOGT activityOrganelle functionO-GlcNAcylationSubcellular sitesMTORC activitySignal transductionIntracellular proteinsNutrient-sensing signalsCell signalingInsulin stimulationPlasma membraneGene expressionRegulatory mechanismsAkt phosphorylation
2017
Protein O-GlcNAcylation: emerging mechanisms and functions
Yang X, Qian K. Protein O-GlcNAcylation: emerging mechanisms and functions. Nature Reviews Molecular Cell Biology 2017, 18: 452-465. PMID: 28488703, PMCID: PMC5667541, DOI: 10.1038/nrm.2017.22.Peer-Reviewed Original ResearchConceptsPost-translational modificationsO-GlcNAcylationAdaptor proteinGlcNAcylation levelsO-GlcNAc homeostasisTetratricopeptide repeat domainDiverse cellular processesProtein-protein interactionsOptimal cellular functionContext-dependent recruitmentPost-translational levelCell signaling dynamicsUnwanted protein aggregationCellular O-GlcNAcylationSubstrate-specific interactionsSpecific cell typesN-acetylglucosamine moietiesLevels of OGTGlcNAc signalingMitochondrial proteinsSpatiotemporal regulationCellular functionsCellular processesEpigenetic modificationsProtein substrates
2008
Phosphoinositide signalling links O-GlcNAc transferase to insulin resistance
Yang X, Ongusaha PP, Miles PD, Havstad JC, Zhang F, So WV, Kudlow JE, Michell RH, Olefsky JM, Field SJ, Evans RM. Phosphoinositide signalling links O-GlcNAc transferase to insulin resistance. Nature 2008, 451: 964-969. PMID: 18288188, DOI: 10.1038/nature06668.Peer-Reviewed Original ResearchMeSH KeywordsAcetylglucosamineAnimalsCell MembraneChlorocebus aethiopsCOS CellsInsulinInsulin ResistanceLipid MetabolismLiverMaleMiceMice, Inbred C57BLN-AcetylglucosaminyltransferasesPhosphatidylinositol PhosphatesPhosphatidylinositolsPhosphorylationProtein Structure, TertiaryProtein TransportSecond Messenger SystemsConceptsO-GlcNAcSignal transductionPhosphoinositide-binding domainsPost-translational modificationsO-GlcNAc transferaseHexosamine biosynthetic pathwayInsulin signal transductionInsulin-responsive genesCellular regulationGlcNAc transferaseNutritional cuesNuclear proteinsBiosynthetic pathwayPlasma membraneProtein degradationNutrient sensorMolecular mechanismsN-acetylglucosamineTransductionPathwayTransferaseHepatic overexpressionGlucose fluxDynamic modificationMetabolic status