Featured Publications
Cryo-EM analyses of KIT and oncogenic mutants reveal structural oncogenic plasticity and a target for therapeutic intervention
Krimmer S, Bertoletti N, Suzuki Y, Katic L, Mohanty J, Shu S, Lee S, Lax I, Mi W, Schlessinger J. Cryo-EM analyses of KIT and oncogenic mutants reveal structural oncogenic plasticity and a target for therapeutic intervention. Proceedings Of The National Academy Of Sciences Of The United States Of America 2023, 120: e2300054120. PMID: 36943885, PMCID: PMC10068818, DOI: 10.1073/pnas.2300054120.Peer-Reviewed Original ResearchConceptsOncogenic KIT mutantsStem cell factorKIT mutantsHomotypic contactsCryo-EM analysisUnexpected structural plasticityLigand stem cell factorElectron microscopy structural analysisReceptor tyrosine kinase KITOncogenic mutantsHematopoietic stem cellsKIT dimerizationTyrosine kinase KITD5 regionPlasma membraneMutational analysisMutantsExtracellular domainGerm cellsHuman cancersSomatic gainCell factorStructural plasticityStem cellsKinase KIT
2022
Unveiling molecular insights into the mechanism of activation of oncogenic phosphoinositide 3-kinase mutants
Krimmer S, Schlessinger J. Unveiling molecular insights into the mechanism of activation of oncogenic phosphoinositide 3-kinase mutants. Proceedings Of The National Academy Of Sciences Of The United States Of America 2022, 119: e2218237119. PMID: 36475945, PMCID: PMC9897451, DOI: 10.1073/pnas.2218237119.Peer-Reviewed Original ResearchInsights on JAK2 Modulation by Potent, Selective, and Cell-Permeable Pseudokinase-Domain Ligands
Liosi ME, Ippolito JA, Henry SP, Krimmer SG, Newton AS, Cutrona KJ, Olivarez RA, Mohanty J, Schlessinger J, Jorgensen WL. Insights on JAK2 Modulation by Potent, Selective, and Cell-Permeable Pseudokinase-Domain Ligands. Journal Of Medicinal Chemistry 2022, 65: 8380-8400. PMID: 35653642, PMCID: PMC9939005, DOI: 10.1021/acs.jmedchem.2c00283.Peer-Reviewed Original ResearchConversion of a False Virtual Screen Hit into Selective JAK2 JH2 Domain Binders Using Convergent Design Strategies
Henry SP, Liosi ME, Ippolito JA, Cutrona KJ, Krimmer SG, Newton AS, Schlessinger J, Jorgensen WL. Conversion of a False Virtual Screen Hit into Selective JAK2 JH2 Domain Binders Using Convergent Design Strategies. ACS Medicinal Chemistry Letters 2022, 13: 819-826. PMID: 35586418, PMCID: PMC9109162, DOI: 10.1021/acsmedchemlett.2c00051.Peer-Reviewed Original Research
2021
Structural basis for ligand reception by anaplastic lymphoma kinase
Li T, Stayrook SE, Tsutsui Y, Zhang J, Wang Y, Li H, Proffitt A, Krimmer SG, Ahmed M, Belliveau O, Walker IX, Mudumbi KC, Suzuki Y, Lax I, Alvarado D, Lemmon MA, Schlessinger J, Klein DE. Structural basis for ligand reception by anaplastic lymphoma kinase. Nature 2021, 600: 148-152. PMID: 34819665, PMCID: PMC8639777, DOI: 10.1038/s41586-021-04141-7.Peer-Reviewed Original ResearchIndoloxytriazines as binding molecules for the JAK2 JH2 pseudokinase domain and its V617F variant
Newton AS, Liosi ME, Henry SP, Deiana L, Faver JC, Krimmer SG, Puleo DE, Schlessinger J, Jorgensen WL. Indoloxytriazines as binding molecules for the JAK2 JH2 pseudokinase domain and its V617F variant. Tetrahedron Letters 2021, 77: 153248. PMID: 34393283, PMCID: PMC8357305, DOI: 10.1016/j.tetlet.2021.153248.Peer-Reviewed Original ResearchEngineering diaminotriazole ligands into ATP-mimetics for selective targeting of the Janus kinase 2 (JAK2) pseudokinase domain (JH2)
Liosi M, Krimmer S, Sofia Newton A, Dawson T, Puleo D, Cutrona K, Suzuki Y, Henry S, Schlessinger J, Jorgensen W. Engineering diaminotriazole ligands into ATP-mimetics for selective targeting of the Janus kinase 2 (JAK2) pseudokinase domain (JH2). 2021 DOI: 10.1021/scimeetings.1c00737.Peer-Reviewed Original Research
2020
Metadynamics as a Postprocessing Method for Virtual Screening with Application to the Pseudokinase Domain of JAK2
Cutrona KJ, Newton AS, Krimmer SG, Tirado-Rives J, Jorgensen WL. Metadynamics as a Postprocessing Method for Virtual Screening with Application to the Pseudokinase Domain of JAK2. Journal Of Chemical Information And Modeling 2020, 60: 4403-4415. PMID: 32383599, PMCID: PMC7927942, DOI: 10.1021/acs.jcim.0c00276.Peer-Reviewed Original ResearchSelective Janus Kinase 2 (JAK2) Pseudokinase Ligands with a Diaminotriazole Core
Liosi ME, Krimmer SG, Newton AS, Dawson T, Puleo DE, Cutrona KJ, Suzuki Y, Schlessinger J, Jorgensen WL. Selective Janus Kinase 2 (JAK2) Pseudokinase Ligands with a Diaminotriazole Core. Journal Of Medicinal Chemistry 2020, 63: 5324-5340. PMID: 32329617, PMCID: PMC7949251, DOI: 10.1021/acs.jmedchem.0c00192.Peer-Reviewed Original Research
2018
Bayesian analysis of isothermal titration calorimetry for binding thermodynamics
Nguyen T, Rustenburg A, Krimmer S, Zhang H, Clark J, Novick P, Branson K, Pande V, Chodera J, Minh D. Bayesian analysis of isothermal titration calorimetry for binding thermodynamics. PLOS ONE 2018, 13: e0203224. PMID: 30212471, PMCID: PMC6136728, DOI: 10.1371/journal.pone.0203224.Peer-Reviewed Original ResearchOptimization of Pyrazoles as Phenol Surrogates to Yield Potent Inhibitors of Macrophage Migration Inhibitory Factor
Trivedi‐Parmar V, Robertson MJ, Cisneros J, Krimmer SG, Jorgensen WL. Optimization of Pyrazoles as Phenol Surrogates to Yield Potent Inhibitors of Macrophage Migration Inhibitory Factor. ChemMedChem 2018, 13: 1092-1097. PMID: 29575754, PMCID: PMC5990473, DOI: 10.1002/cmdc.201800158.Peer-Reviewed Original Research
2017
Adding a Hydrogen Bond May Not Help: Naphthyridinone vs Quinoline Inhibitors of Macrophage Migration Inhibitory Factor
Dawson TK, Dziedzic P, Robertson MJ, Cisneros J, Krimmer SG, Newton AS, Tirado-Rives J, Jorgensen WL. Adding a Hydrogen Bond May Not Help: Naphthyridinone vs Quinoline Inhibitors of Macrophage Migration Inhibitory Factor. ACS Medicinal Chemistry Letters 2017, 8: 1287-1291. PMID: 29259749, PMCID: PMC5733268, DOI: 10.1021/acsmedchemlett.7b00384.Peer-Reviewed Original ResearchHydrogen bondsFEP resultsProtein-ligand hydrogen bondsExcellent aqueous solubilityLactam carbonyl groupDFT calculationsAqueous solubilityAmmonium groupsCarbonyl groupN distancesActive siteCrystal structureBondsQuinoline inhibitorsRelated quinolinesQuinolineNaphthyridinonesModel systemSolubilityCompoundsComplexesLys32CoordinationNMCalculationsHow Nothing Boosts Affinity: Hydrophobic Ligand Binding to the Virtually Vacated S1′ Pocket of Thermolysin
Krimmer S, Cramer J, Schiebel J, Heine A, Klebe G. How Nothing Boosts Affinity: Hydrophobic Ligand Binding to the Virtually Vacated S1′ Pocket of Thermolysin. Journal Of The American Chemical Society 2017, 139: 10419-10431. PMID: 28696673, DOI: 10.1021/jacs.7b05028.Peer-Reviewed Original ResearchConceptsWater moleculesPresent water moleculesWeak-binding ligandsAliphatic side chainsSpecificity pocketIsothermal titration calorimetrySolvent moleculesHigh-resolution crystallographyActive siteHydrophobic ligand bindingCrystalline stateElectron density mapsSide chainsTitration calorimetryS1 pocketNoble gas atomsSubstituentsThermodynamic signaturesFree energyHydration stateMoleculesLigandsPaying the Price of Desolvation in Solvent-Exposed Protein Pockets: Impact of Distal Solubilizing Groups on Affinity and Binding Thermodynamics in a Series of Thermolysin Inhibitors
Cramer J, Krimmer S, Heine A, Klebe G. Paying the Price of Desolvation in Solvent-Exposed Protein Pockets: Impact of Distal Solubilizing Groups on Affinity and Binding Thermodynamics in a Series of Thermolysin Inhibitors. Journal Of Medicinal Chemistry 2017, 60: 5791-5799. PMID: 28590130, DOI: 10.1021/acs.jmedchem.7b00490.Peer-Reviewed Original ResearchConceptsPolar groupsThermolysin inhibitorsProtein pocketFirst hydration shellProtein-ligand complexesProtein-solvent interfaceProspective binding sitesWater moleculesHydration shellSolvent effectsAmmonium groupsPartial desolvationSolvent-exposed positionsBinding thermodynamicsWater reorganizationThermodynamic fingerprintLead optimizationInhibitor scaffoldsHydrophobic analoguesDesolvationPharmacokinetic propertiesOpen pocket
2016
Elucidating the Origin of Long Residence Time Binding for Inhibitors of the Metalloprotease Thermolysin
Cramer J, Krimmer S, Fridh V, Wulsdorf T, Karlsson R, Heine A, Klebe G. Elucidating the Origin of Long Residence Time Binding for Inhibitors of the Metalloprotease Thermolysin. ACS Chemical Biology 2016, 12: 225-233. PMID: 27959500, DOI: 10.1021/acschembio.6b00979.Peer-Reviewed Original ResearchConceptsCharge-assisted hydrogen bondsMetalloprotease thermolysinSurface plasmon resonance spectroscopyDrug discoveryHigh-resolution crystal structuresPlasmon resonance spectroscopyKinetic dataProtein-ligand interactionsStructure-kinetic relationshipsRational drug discoveryHigh conservationHydrogen bondsDissociation rate constantsStrength of interactionThermolysin inhibitorsMetalloprotease familyCrystal structureMolecular mechanismsSide chainsStrand motifResonance spectroscopyStructural motifsRate constantsRate-limiting stepLigand releaseRational Design of Thermodynamic and Kinetic Binding Profiles by Optimizing Surface Water Networks Coating Protein-Bound Ligands
Krimmer S, Cramer J, Betz M, Fridh V, Karlsson R, Heine A, Klebe G. Rational Design of Thermodynamic and Kinetic Binding Profiles by Optimizing Surface Water Networks Coating Protein-Bound Ligands. Journal Of Medicinal Chemistry 2016, 59: 10530-10548. PMID: 27933956, DOI: 10.1021/acs.jmedchem.6b00998.Peer-Reviewed Original ResearchConceptsDifferent hydrophobic substituentsKinetic binding profilesProtein-bound ligandsParent ligandSurface plasmon resonanceWater moleculesProtein-bound inhibitorThermolysin inhibitorsHigh-resolution crystallographyCongeneric seriesRational designWater networkMD simulationsHydrophobic substituentsPlasmon resonanceSubstituentsAffinity enhancementLigandsWater polygonsWater layerSurface water networkSurface water layerBinding signatureResidence timeCrystallographyActive Site Mapping of an Aspartic Protease by Multiple Fragment Crystal Structures: Versatile Warheads To Address a Catalytic Dyad
Radeva N, Schiebel J, Wang X, Krimmer S, Fu K, Stieler M, Ehrmann F, Metz A, Rickmeyer T, Betz M, Winquist J, Park A, Huschmann F, Weiss M, Mueller U, Heine A, Klebe G. Active Site Mapping of an Aspartic Protease by Multiple Fragment Crystal Structures: Versatile Warheads To Address a Catalytic Dyad. Journal Of Medicinal Chemistry 2016, 59: 9743-9759. PMID: 27726357, DOI: 10.1021/acs.jmedchem.6b01195.Peer-Reviewed Original ResearchConceptsFunctional groupsAspartic protease endothiapepsinCatalytic dyadCarboxylic acid fragmentOxygen functional groupsNovel functional groupsActive site mappingSteric demandWater moleculesFragment-growing strategyCrystal structureSide chainsFragment libraryHigh-quality crystalsS1 pocketScreening cascadeAcid fragmentCrystallographySpecificity pocketRelated fragmentsWarheadExperimental Active-Site Mapping by Fragments: Hot Spots Remote from the Catalytic Center of Endothiapepsin
Radeva N, Krimmer S, Stieler M, Fu K, Wang X, Ehrmann F, Metz A, Huschmann F, Weiss M, Mueller U, Schiebel J, Heine A, Klebe G. Experimental Active-Site Mapping by Fragments: Hot Spots Remote from the Catalytic Center of Endothiapepsin. Journal Of Medicinal Chemistry 2016, 59: 7561-7575. PMID: 27463859, DOI: 10.1021/acs.jmedchem.6b00645.Peer-Reviewed Original ResearchHigh-Throughput Crystallography: Reliable and Efficient Identification of Fragment Hits
Schiebel J, Krimmer S, Röwer K, Knörlein A, Wang X, Park A, Stieler M, Ehrmann F, Fu K, Radeva N, Krug M, Huschmann F, Glöckner S, Weiss M, Mueller U, Klebe G, Heine A. High-Throughput Crystallography: Reliable and Efficient Identification of Fragment Hits. Structure 2016, 24: 1398-1409. PMID: 27452405, DOI: 10.1016/j.str.2016.06.010.Peer-Reviewed Original ResearchConceptsFragment-like moleculesFragment-based methodsSubsequent drug designHigh-quality diffraction dataFragment hitsHit identificationLead structuresDiverse fragmentsDrug designThroughput CrystallographyDiffraction dataStructural informationProtein crystalsCrystallographyElectron densityRefinement pipelineLigandsDrug developmentCompoundsMoleculesRefinement cycleStructureSuccessful applicationLow affinityHitsSix Biophysical Screening Methods Miss a Large Proportion of Crystallographically Discovered Fragment Hits: A Case Study
Schiebel J, Radeva N, Krimmer S, Wang X, Stieler M, Ehrmann F, Fu K, Metz A, Huschmann F, Weiss M, Mueller U, Heine A, Klebe G. Six Biophysical Screening Methods Miss a Large Proportion of Crystallographically Discovered Fragment Hits: A Case Study. ACS Chemical Biology 2016, 11: 1693-1701. PMID: 27028906, DOI: 10.1021/acschembio.5b01034.Peer-Reviewed Original Research