2024
Regulation of cardiac function by the autonomic nervous system
Hafez O, Chang R. Regulation of cardiac function by the autonomic nervous system. Physiology 2024 PMID: 39585760, DOI: 10.1152/physiol.00018.2024.Peer-Reviewed Original ResearchAutonomic nervous systemNervous systemNeurocardiac axisIntrinsic cardiac nervous systemRegulation of cardiac functionCardiac nervous systemAutonomic control of the heartRegulating cardiovascular physiologyAutonomic dysfunctionSensory neuronsCardiac functionParasympathetic nervous systemClinical conditionsCardiac reflexesThe heartNeuronal populationsTreatment approachesCardiovascular diseaseCardiovascular physiologyMotor circuitsPhysiological roleAutonomic controlClinical fieldHeartDysfunctionSingle-cell transcriptomic and proteomic analysis of Parkinson’s disease brains
Zhu B, Park J, Coffey S, Russo A, Hsu I, Wang J, Su C, Chang R, Lam T, Gopal P, Ginsberg S, Zhao H, Hafler D, Chandra S, Zhang L. Single-cell transcriptomic and proteomic analysis of Parkinson’s disease brains. Science Translational Medicine 2024, 16: eabo1997. PMID: 39475571, DOI: 10.1126/scitranslmed.abo1997.Peer-Reviewed Original ResearchConceptsProteomic analysisAlzheimer's diseasePrefrontal cortexBrain cell typesGenetics of PDParkinson's diseaseCell-cell interactionsChaperone expressionSingle-nucleus transcriptomesExpressed genesTranscriptional changesPostmortem human brainPostmortem brain tissueDiseased brainSynaptic proteinsSingle-cellDown-regulationBrain cell populationsBrain regionsCell typesNeurodegenerative disordersLate-stage PDParkinson's disease brainsDisease etiologyNeuronal vulnerabilityMolecular and cellular neurocardiology in heart disease
Habecker B, Bers D, Birren S, Chang R, Herring N, Kay M, Li D, Mendelowitz D, Mongillo M, Montgomery J, Ripplinger C, Tampakakis E, Winbo A, Zaglia T, Zeltner N, Paterson D. Molecular and cellular neurocardiology in heart disease. The Journal Of Physiology 2024 PMID: 38778747, DOI: 10.1113/jp284739.Peer-Reviewed Original ResearchPatient-specific stem cellsHeart diseaseArea of controversyCardiac dysautonomiaNovel imaging techniquesSympathetic impairmentHeart failureTherapeutic opportunitiesNeurochemical pathwaysStem cellsCellular basisIntracellular pathwaysDiscovery of molecular pathwaysMolecular pathwaysDiseaseImaging techniquesHeartTarget discoverySpatial transcriptomicsPathwayStudy diseasesDysautonomiaPatients
2023
Sensory neurons promote immune homeostasis in the lung
Tamari M, Del Bel K, Ver Heul A, Zamidar L, Orimo K, Hoshi M, Trier A, Yano H, Yang T, Biggs C, Motomura K, Shibuya R, Yu C, Xie Z, Iriki H, Wang Z, Auyeung K, Damle G, Demircioglu D, Gregory J, Hasson D, Dai J, Chang R, Morita H, Matsumoto K, Jain S, Van Dyken S, Milner J, Bogunovic D, Hu H, Artis D, Turvey S, Kim B. Sensory neurons promote immune homeostasis in the lung. Cell 2023, 187: 44-61.e17. PMID: 38134932, PMCID: PMC10811756, DOI: 10.1016/j.cell.2023.11.027.Peer-Reviewed Original ResearchThe Coding Logic of Interoception
Wang R, Chang R. The Coding Logic of Interoception. Annual Review Of Physiology 2023, 86: 301-327. PMID: 38061018, PMCID: PMC11103614, DOI: 10.1146/annurev-physiol-042222-023455.Peer-Reviewed Original ResearchCardiovascular Brain Circuits
Mohanta S, Yin C, Weber C, Godinho-Silva C, Veiga-Fernandes H, Xu Q, Chang R, Habenicht A. Cardiovascular Brain Circuits. Circulation Research 2023, 132: 1546-1565. PMID: 37228235, PMCID: PMC10231443, DOI: 10.1161/circresaha.123.322791.Peer-Reviewed Original ResearchConceptsCardiovascular systemBrain circuitsAxonal connectionsCardiovascular disease progressionIntegration centerDistant brain regionsDistinct sensory neuronsEffector neuronsAfferent inputPeripheral organsDisease progressionHormone releaseSensory neuronsImmune memoryNervous systemBrain centersImmune systemBrain regionsEfferent signalsHumoral cuesDisease hypothesisArterial treeNeuronsBrainCircuit hypothesisThe vagus nerve in cardiovascular physiology and pathophysiology: From evolutionary insights to clinical medicine
Rajendran P, Hadaya J, Khalsa S, Yu C, Chang R, Shivkumar K. The vagus nerve in cardiovascular physiology and pathophysiology: From evolutionary insights to clinical medicine. Seminars In Cell And Developmental Biology 2023, 156: 190-200. PMID: 36641366, PMCID: PMC10336178, DOI: 10.1016/j.semcdb.2023.01.001.Peer-Reviewed Original ResearchConceptsParasympathetic nervous systemNervous systemEvolutionary insightsGenetic diversityComparative biologySympathetic nervous systemParasympathetic dysfunctionVagal neuronsBlood pressureVagal efferentsAfferent innervationVagus nerveHeart diseaseCardiovascular functionCardiovascular diseaseHeart rateTherapeutic potentialCardiovascular physiologyDiseaseClinical medicineHeartBiologyDiversityInnervationNerve
2022
“Goodnight” from the heart: A cardiovascular circuit that promotes sleep
Yu C, Chang R. “Goodnight” from the heart: A cardiovascular circuit that promotes sleep. Neuron 2022, 110: 3857-3859. PMID: 36480939, DOI: 10.1016/j.neuron.2022.11.005.Peer-Reviewed Original Research
2020
Vagal sensory neurons and gut-brain signaling
Yu CD, Xu QJ, Chang RB. Vagal sensory neurons and gut-brain signaling. Current Opinion In Neurobiology 2020, 62: 133-140. PMID: 32380360, PMCID: PMC7560965, DOI: 10.1016/j.conb.2020.03.006.Peer-Reviewed Original ResearchConceptsVagal sensory neuronsGut-brain signalingSensory neuronsGut-derived signalsTrans-synaptic tracingImmune controlVagus nerveImmunological disordersBrain pathwaysAnatomical basisNovel physiological functionCellular mechanismsActivity recordingsNeural activity recordingNeuronsRecent findingsNew gutPhysiological functionsGutGut systemSingle-cell genomic analysisSignalingAfferentsNervePsychological regulation
2019
Arterial Baroreceptors Sense Blood Pressure through Decorated Aortic Claws.
Min S, Chang RB, Prescott SL, Beeler B, Joshi NR, Strochlic DE, Liberles SD. Arterial Baroreceptors Sense Blood Pressure through Decorated Aortic Claws. Cell Reports 2019, 29: 2192-2201.e3. PMID: 31747594, PMCID: PMC6893869, DOI: 10.1016/j.celrep.2019.10.040.Peer-Reviewed Original Research
2018
An evolutionarily conserved gene family encodes proton-selective ion channels
Tu YH, Cooper AJ, Teng B, Chang RB, Artiga DJ, Turner HN, Mulhall EM, Ye W, Smith AD, Liman ER. An evolutionarily conserved gene family encodes proton-selective ion channels. Science 2018, 359: 1047-1050. PMID: 29371428, PMCID: PMC5845439, DOI: 10.1126/science.aao3264.Peer-Reviewed Original ResearchConceptsProton-selective ion channelIon channelsProton channelComparative transcriptome analysisTaste receptor cellsWidespread tissue distributionEvolutionary conservationEukaryotic cellsGene familyMurine geneTranscriptome analysisReceptor cellsElectrical signalingProton conductanceBroader roleMouse taste receptor cellsTissue distributionCellsOrthologsGenesSignalingProteinConservationPhysiologyFamily
2017
Piezo2 senses airway stretch and mediates lung inflation-induced apnoea.
Nonomura K, Woo SH, Chang RB, Gillich A, Qiu Z, Francisco AG, Ranade SS, Liberles SD, Patapoutian A. Piezo2 senses airway stretch and mediates lung inflation-induced apnoea. Nature 2017, 541: 176-181. PMID: 28002412, PMCID: PMC5267560, DOI: 10.1038/nature20793.Peer-Reviewed Original Research
2016
Sensory Neurons that Detect Stretch and Nutrients in the Digestive System.
Williams EK, Chang RB, Strochlic DE, Umans BD, Lowell BB, Liberles SD. Sensory Neurons that Detect Stretch and Nutrients in the Digestive System. Cell 2016, 166: 209-21. PMID: 27238020, PMCID: PMC4930427, DOI: 10.1016/j.cell.2016.05.011.Peer-Reviewed Original ResearchInhibition of KIR2.1 by Intracellular Acidification Contributes to Sour Taste Transduction
Ye W, Chang R, Bushman J, Tu Y, Mulhall E, Wilson C, Cooper A, Chick W, Hill-Eubanks D, Nelson M, Kinnamon S, Liman E. Inhibition of KIR2.1 by Intracellular Acidification Contributes to Sour Taste Transduction. Biophysical Journal 2016, 110: 424a. DOI: 10.1016/j.bpj.2015.11.2294.Peer-Reviewed Original Research
2015
Vagal Sensory Neuron Subtypes that Differentially Control Breathing.
Chang RB, Strochlic DE, Williams EK, Umans BD, Liberles SD. Vagal Sensory Neuron Subtypes that Differentially Control Breathing. Cell 2015, 161: 622-633. PMID: 25892222, PMCID: PMC4842319, DOI: 10.1016/j.cell.2015.03.022.Peer-Reviewed Original Research
2011
TRPAI is a Co2 Sensor in Nociceptors
Wang Y, Chang R, Liman E. TRPAI is a Co2 Sensor in Nociceptors. Biophysical Journal 2011, 100: 520a. DOI: 10.1016/j.bpj.2010.12.3041.Peer-Reviewed Original Research
2010
A proton current drives action potentials in genetically identified sour taste cells
Chang RB, Waters H, Liman ER. A proton current drives action potentials in genetically identified sour taste cells. Proceedings Of The National Academy Of Sciences Of The United States Of America 2010, 107: 22320-22325. PMID: 21098668, PMCID: PMC3009759, DOI: 10.1073/pnas.1013664107.Peer-Reviewed Original ResearchConceptsTaste cellsSour stimuliSour taste cellsAction potential firingSour taste transductionAcid stimuliGenetic ablation experimentsSuction electrode recordingsSour sensingSour cellsSubset of cellsAction potentialsPKD1L3 genesExpression of YFPResponsive cellsTaste cell membraneElectrode recordingsNumerous ion channelsTaste budsTaste transductionTargeted deletionSour transductionIon channels