1990
Prolactin and insulin are targeted to the regulated pathway in GH4C1 cells, but their storage is differentially regulated.
Reaves B, Van Itallie C, Moore H, Dannies P. Prolactin and insulin are targeted to the regulated pathway in GH4C1 cells, but their storage is differentially regulated. Endocrinology 1990, 4: 1017-26. PMID: 2284004, DOI: 10.1210/mend-4-7-1017.Peer-Reviewed Original ResearchConceptsGH4C1 cellsEpidermal growth factorPRL synthesisGrowth factorPreferential increaseCombination of estradiolRegulated pathwayRat pituitary tumor cellsIntracellular PRLPituitary tumor cellsBasal releasePRL releaseIntracellular proinsulinSame time courseHormone treatmentPRL storageTumor cellsProinsulin immunoreactivityMRNA levelsPRLInsulinSame peak heightHormoneProinsulinTreatmentComparison of the Regulation of Carboxypeptidase E and Prolactin in GH4C1 Cells, a Rat Pituitary Cell Line
Flicker L, Reaves B, Das B, Dannies P. Comparison of the Regulation of Carboxypeptidase E and Prolactin in GH4C1 Cells, a Rat Pituitary Cell Line. Neuroendocrinology 1990, 51: 658-663. PMID: 2114002, DOI: 10.1159/000125407.Peer-Reviewed Original ResearchConceptsGH4C1 cellsPituitary cell lineEpidermal growth factorNM thyrotropin-releasing hormoneCarboxypeptidase ECell linesCPE activityGrowth factorThyrotropin-releasing hormoneLevels of prolactinCPE mRNAAnterior pituitary cell lineIntracellular levelsSecretory granulesRat anterior pituitary cell lineRat pituitary cell lineGH4C1 cell lineProlactinControl valuesIntracellular prolactinTreatmentNorthern blot analysisBlot analysisEstradiolInsulin
1986
Hormonal Induction of Secretory Granules in a Pituitary Tumor Cell Line*
SCAMMELL J, BURRAGE T, DANNIES P. Hormonal Induction of Secretory Granules in a Pituitary Tumor Cell Line*. Endocrinology 1986, 119: 1543-1548. PMID: 3530721, DOI: 10.1210/endo-119-4-1543.Peer-Reviewed Original ResearchConceptsGH4C1 cellsIntracellular PRLSecretory granulesCombination of estradiolNumber of granulesPituitary tumor cell linePRL accumulationHormone regimenTumor cell strainsEpidermal growth factorHormone treatmentTumor cell linesPRLGrowth factorControl levelsOccasional granulesCell linesHormonal inductionGHCell strainsCellsGranule numberTreatmentCellular contentStorage granules
1981
Insulin and 17β-Estradiol Increase the Intracellular Prolactin Content of GH4C1 Cells*
KIINO D, DANNIES P. Insulin and 17β-Estradiol Increase the Intracellular Prolactin Content of GH4C1 Cells*. Endocrinology 1981, 109: 1264-1269. PMID: 7026222, DOI: 10.1210/endo-109-4-1264.Peer-Reviewed Original ResearchConceptsIntracellular PRLEffect of insulinDays of treatmentHalf-maximal doseRat pituitary tumor cellsPituitary tumor cellsIntracellular prolactin contentM estradiolEstradiolCombined treatmentPRLInsulinPRL synthesisTumor cellsGH4C1 cellsM insulinControl levelsProlactin contentIntracellular hormoneM. TreatmentTotal proteinTreatmentDoseIntracellular transit timeSmall increase
1973
Effects of Thyrotropin-releasing Hormone and Hydrocortisone on Synthesis and Degradation of Prolactin in a Rat Pituitary Cell Strain
Dannies P, Tashjian A. Effects of Thyrotropin-releasing Hormone and Hydrocortisone on Synthesis and Degradation of Prolactin in a Rat Pituitary Cell Strain. Journal Of Biological Chemistry 1973, 248: 6174-6179. PMID: 4199262, DOI: 10.1016/s0021-9258(19)43524-2.Peer-Reviewed Original ResearchConceptsSynthesis of prolactinProlactin accumulationThyrotropin-releasing hormoneHydrocortisone resultsEffect of thyrotropinLong-term effectsPituitary cellsGH cellsProlactinDegradation of prolactinHormoneTerm effectsHydrocortisoneIntracellular poolDecreased accumulationClonal strainsCell strainsRadioactive leucineSpecific immunoprecipitationCellsHoursTreatmentDaysLeucineCulture medium