2000
Extracellular Atp Inhibits the Small-Conductance K Channel on the Apical Membrane of the Cortical Collecting Duct from Mouse Kidney
Lu M, MacGregor G, Wang W, Giebisch G. Extracellular Atp Inhibits the Small-Conductance K Channel on the Apical Membrane of the Cortical Collecting Duct from Mouse Kidney. The Journal Of General Physiology 2000, 116: 299-310. PMID: 10919872, PMCID: PMC2229488, DOI: 10.1085/jgp.116.2.299.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine TriphosphateAffinity LabelsAlkaloidsAnimalsCarbazolesColforsinCyclic AMPCyclic AMP-Dependent Protein KinasesCyclic GMP-Dependent Protein KinasesEnzyme InhibitorsExtracellular SpaceIndolesIon Channel GatingKidney Tubules, CollectingMembrane PotentialsMiceMice, Inbred C57BLNaphthalenesNG-Nitroarginine Methyl EsterOkadaic AcidPatch-Clamp TechniquesPhosphoprotein PhosphatasesPhosphorylationPotassiumPotassium ChannelsPotassium Channels, Calcium-ActivatedProtein KinasesRatsRats, Sprague-DawleyReceptors, PurinergicSmall-Conductance Calcium-Activated Potassium ChannelsThionucleotidesUridine TriphosphateConceptsApical membraneChannel activityProtein kinase AProtein kinase C.Protein phosphatasePurinergic receptor stimulationSmall-conductance potassium channelsOkadaic acidExtracellular ATP concentrationKinase AKinase C.Addition of ATPG proteinsRat homologuePhospholipase CPhosphatase activitySK activitySmall-conductance K channelsApical receptorsATP inhibitsSingle-channel analysisATPNucleotide sensitivityApical K channelsK channels
1998
The A kinase anchoring protein is required for mediating the effect of protein kinase A on ROMK1 channels
Ali S, Chen X, Lu M, Xu J, Lerea K, Hebert S, Wang W. The A kinase anchoring protein is required for mediating the effect of protein kinase A on ROMK1 channels. Proceedings Of The National Academy Of Sciences Of The United States Of America 1998, 95: 10274-10278. PMID: 9707637, PMCID: PMC21498, DOI: 10.1073/pnas.95.17.10274.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine TriphosphateAnimalsCarrier ProteinsColforsinCyclic AMPCyclic AMP-Dependent Protein Kinase Type IICyclic AMP-Dependent Protein KinasesFemaleGTP-Binding ProteinsIn Vitro TechniquesKidneyOocytesPatch-Clamp TechniquesPotassium ChannelsPotassium Channels, Inwardly RectifyingRecombinant ProteinsXenopus laevisConceptsEffect of forskolinMicroM forskolinProtein kinase APatch-clamp techniqueKinase ACAMP-dependent pathwayKidney cortexNeuronal tissueForskolinLines of evidenceROMK channelsEffect of cAMPKidneyCAMP mimicsXenopus oocytesPresent studyType II protein kinase ASecretory channelsOocytesROMK1 channelsMicroMRIICAMPAddition of ATPMin