2017
Kv3 Channels: Enablers of Rapid Firing, Neurotransmitter Release, and Neuronal Endurance
Kaczmarek LK, Zhang Y. Kv3 Channels: Enablers of Rapid Firing, Neurotransmitter Release, and Neuronal Endurance. Physiological Reviews 2017, 97: 1431-1468. PMID: 28904001, PMCID: PMC6151494, DOI: 10.1152/physrev.00002.2017.Peer-Reviewed Original ResearchConceptsKv3 channelsAuditory brain stem neuronsNeurotransmitter releaseBrain stem neuronsOngoing neuronal activityFire action potentialsHigh-frequency firingChannel genesStem neuronsGABAergic interneuronsMultiple protein isoformsCertain neuronsProtein-protein interactionsNeuronal activityNeuronal functionAlzheimer's diseaseNeurological disordersAction potentialsPurkinje cellsUnique expression patternKv3 familyNeuronsAbnormal regulationProtein isoformsProtein kinase
2014
Use of label-free optical biosensors to detect modulation of potassium channels by G-protein coupled receptors.
Fleming MR, Shamah SM, Kaczmarek LK. Use of label-free optical biosensors to detect modulation of potassium channels by G-protein coupled receptors. Journal Of Visualized Experiments 2014, e51307. PMID: 24562095, PMCID: PMC4122194, DOI: 10.3791/51307.Peer-Reviewed Original ResearchConceptsG protein-coupled receptorsOptical biosensorPlasma membraneLabel-free optical biosensorProtein-protein interactionsIon channelsChannel-protein interactionsExcitable cell typesReceptor tyrosine kinasesProtein-coupled receptorsLigand-induced changesCell surface receptorsPotassium channelsRegulatory proteinsTyrosine kinaseG proteinsProtein behaviorSodium-activated potassium channelsExogenous labelsPhysiological relevanceCell adhesionLiving cellsCell typesHeteromeric channelsSurface receptors
2009
Use of optical biosensors to detect modulation of Slack potassium channels by G protein-coupled receptors
Fleming MR, Kaczmarek LK. Use of optical biosensors to detect modulation of Slack potassium channels by G protein-coupled receptors. Journal Of Receptors And Signal Transduction 2009, 29: 173-181. PMID: 19640220, PMCID: PMC3727623, DOI: 10.1080/10799890903056883.Peer-Reviewed Original ResearchConceptsG protein-coupled receptorsProtein-coupled receptorsPlasma membraneIon channelsActivation of GPCRsProtein-protein interactionsDistribution of massExcitable cell typesPotassium channelsRefractive indexHeteromeric channel complexesOptical sensorsOptical biosensorSlack potassium channelsSurface of cellsRegulatory proteinsMass distributionGPCR activationSodium-activated potassium channelsLiving cellsCell typesElectrical propertiesChannel complexBiophysical propertiesProtein
2004
Kv1.3 Channel Gene-Targeted Deletion Produces “Super-Smeller Mice” with Altered Glomeruli, Interacting Scaffolding Proteins, and Biophysics
Fadool DA, Tucker K, Perkins R, Fasciani G, Thompson RN, Parsons AD, Overton JM, Koni PA, Flavell RA, Kaczmarek LK. Kv1.3 Channel Gene-Targeted Deletion Produces “Super-Smeller Mice” with Altered Glomeruli, Interacting Scaffolding Proteins, and Biophysics. Neuron 2004, 41: 389-404. PMID: 14766178, PMCID: PMC2737549, DOI: 10.1016/s0896-6273(03)00844-4.Peer-Reviewed Original ResearchMeSH Keywords14-3-3 ProteinsAdaptor Proteins, Vesicular TransportAnimalsBehavior, AnimalBlotting, WesternBody WeightBrain-Derived Neurotrophic FactorCalcium ChannelsCells, CulturedDensitometryDifferential ThresholdDiscrimination, PsychologicalDose-Response Relationship, DrugDrinkingElectric StimulationEmbryo, MammalianEnergy IntakeExploratory BehaviorGene DeletionGRB10 Adaptor ProteinHabituation, PsychophysiologicHumansInsulinKidneyKineticsKv1.3 Potassium ChannelMembrane PotentialsMiceMice, KnockoutMotor ActivityNerve Tissue ProteinsNeuronsNeurotoxinsNuclear Matrix-Associated ProteinsOdorantsOlfactory BulbPatch-Clamp TechniquesPotassium ChannelsPotassium Channels, Voltage-GatedProteinsRas ProteinsReceptor, trkBReverse Transcriptase Polymerase Chain ReactionRNA, MessengerScorpion VenomsSensory ThresholdsSrc-Family KinasesTime FactorsTyrosine 3-MonooxygenaseConceptsKv1.3-/- miceProtein-protein interactionsGene-targeted deletionKv1.3-null miceSignal transductionScaffolding proteinSignaling cascadesChannel genesC-type inactivationDeletionMembrane potentialNull miceOlfactory codingDetection of odorsPotassium channelsKv1.3 channelsProteinSense of smellSlow inactivation kineticsWild-type miceTransductionGenesOlfactory bulb mitral cellsMiceRole
2002
Protein Kinase Modulation of a Neuronal Cation Channel Requires Protein–Protein Interactions Mediated by an Src homology 3 Domain
Magoski NS, Wilson GF, Kaczmarek LK. Protein Kinase Modulation of a Neuronal Cation Channel Requires Protein–Protein Interactions Mediated by an Src homology 3 Domain. Journal Of Neuroscience 2002, 22: 1-9. PMID: 11756482, PMCID: PMC6757624, DOI: 10.1523/jneurosci.22-01-00001.2002.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine TriphosphateAmino Acid MotifsAmino Acid SequenceAnimalsAplysiaCationsCells, CulturedIon Channel GatingIon ChannelsMacromolecular SubstancesMembrane PotentialsMolecular Sequence DataMultiprotein ComplexesNeuronsPatch-Clamp TechniquesPeptidesPhosphorylationProtein BindingProtein Kinase CSrc Homology DomainsConceptsProtein-protein interactionsSrc homology 3 domainProtein kinase CSH3 domainSH3 domain-mediated interactionsDomain-mediated interactionsIon channelsSrc SH3 domainProtein kinase modulationMultiprotein complexesPDZ domainAdaptor proteinProtein kinaseKinase modulationIon channel modulationKinase CMotif peptideCation channel activationKinaseChannel open probabilityCation channelsMembrane depolarizationChannel activationChannel modulationProtein