2017
Tuning Neuronal Potassium Channels to the Auditory Environment
Kaczmarek L. Tuning Neuronal Potassium Channels to the Auditory Environment. Springer Handbook Of Auditory Research 2017, 64: 133-159. DOI: 10.1007/978-3-319-21530-3_6.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsBrainstem nucleiPotassium channelsAuditory brainstem nucleiVoltage-dependent potassium channelsNeuronal potassium channelsAuditory discrimination taskAuditory neuronsAuditory environmentChannel isoformsNeuronsHigh rateAuditory informationKv3.1Molecular mechanismsDifferent auditory environmentsRapid alterationsDiscrimination task
2015
Learning and Memory
Levitan I, Kaczmarek L. Learning and Memory. 2015, 489-528. DOI: 10.1093/med/9780199773893.003.0019.ChaptersSimple nervous systemLong-term depressionLong-term potentiationMolecular mechanismsEnormous diversityNormal developmentCellular mechanismsNervous systemPresynaptic terminalsMost nervous systemsCyclic AMPSynaptic scalingPathwayMemory formationPlasticityPostsynaptic receptorsSynaptic taggingSynaptic connectionsLong-term phaseReduced preparationsDiversitySpike-timing dependent plasticityMechanismSynapseReceptors
2012
An evolutionarily conserved mode of modulation of Shaw‐like K+ channels
Cotella D, Hernandez‐Enriquez B, Duan Z, Wu X, Gazula V, Brown MR, Kaczmarek LK, Sesti F. An evolutionarily conserved mode of modulation of Shaw‐like K+ channels. The FASEB Journal 2012, 27: 1381-1393. PMID: 23233530, PMCID: PMC3606535, DOI: 10.1096/fj.12-222778.Peer-Reviewed Original ResearchConceptsEffect of phosphorylationC. elegansACP-2Acid phosphataseMammalian homologMammalian homologueCaenorhabditis elegansMouse nervous systemRegulatory partnersBiochemical experimentsMolecular mechanismsElegansBehavioral defectsMode of modulationPhosphorylationPharmacological disruptionShaw familyMammalian brainSubset of neuronsVentricular zonePhosphataseModel systemNervous systemMice resultsElectrophysiological analysis
2001
Title Pages
B.Levitan I, Kaczmarek L. Title Pages. 2001, i-iv. DOI: 10.1093/oso/9780195145236.002.0001.Peer-Reviewed Original ResearchElectrical activityAppropriate synaptic connectionsAction of neurotransmittersBiochemical pathwaysMolecular mechanismsMolecular biologyUndifferentiated cellsIon channelsCellular propertiesSynaptic connectionsNerve cellsNeuronsSensory cellsSynaptic junctionsMolecular factorsSingle neuronsFirst courseCellsGenomeBiologyVaried patternsNeurotransmittersHormoneSecretionActivityPreface
B.Levitan I, Kaczmarek L. Preface. 2001, vii-viii. DOI: 10.1093/oso/9780195145236.002.0003.Peer-Reviewed Original ResearchElectrical activityBiochemical pathwaysMolecular mechanismsAppropriate synaptic connectionsMolecular biologyUndifferentiated cellsAction of neurotransmittersIon channelsCellular propertiesSensory cellsMolecular factorsSynaptic connectionsNerve cellsNeuronsSynaptic junctionsSingle neuronsCellsFirst courseGenomeBiologyPathwayActivityMechanismVaried patternsAccount of mechanismsPreface to the Second Edition
B.Levitan I, Kaczmarek L. Preface to the Second Edition. 2001, ix-x. DOI: 10.1093/oso/9780195145236.002.0004.Peer-Reviewed Original ResearchElectrical activityAppropriate synaptic connectionsBiochemical pathwaysAction of neurotransmittersMolecular mechanismsMolecular biologyUndifferentiated cellsIon channelsCellular propertiesSensory cellsMolecular factorsSynaptic connectionsNerve cellsNeuronsSynaptic junctionsSingle neuronsCellsFirst courseGenomeBiologyPathwayVaried patternsActivityMechanismNeurotransmittersPreface to the First Edition
B.Levitan I, Kaczmarek L. Preface to the First Edition. 2001, xi-xii. DOI: 10.1093/oso/9780195145236.002.0005.Peer-Reviewed Original ResearchElectrical activityBiochemical pathwaysMolecular mechanismsAppropriate synaptic connectionsAction of neurotransmittersMolecular biologyUndifferentiated cellsIon channelsCellular propertiesSensory cellsMolecular factorsSynaptic connectionsNerve cellsNeuronsSynaptic junctionsSingle neuronsCellsFirst courseGenomeBiologyPathwayActivityMechanismVaried patternsNeurotransmitters
1998
The Expression of Two Splice Variants of the Kv3.1 Potassium Channel Gene Is Regulated by Different Signaling Pathways
Liu S, Kaczmarek L. The Expression of Two Splice Variants of the Kv3.1 Potassium Channel Gene Is Regulated by Different Signaling Pathways. Journal Of Neuroscience 1998, 18: 2881-2890. PMID: 9526005, PMCID: PMC6792597, DOI: 10.1523/jneurosci.18-08-02881.1998.Peer-Reviewed Original ResearchMeSH KeywordsAlternative SplicingAnimalsCerebellumFibroblast Growth FactorsGene Expression Regulation, DevelopmentalMembrane PotentialsNerve Growth FactorsNeuropeptidesPotassium ChannelsPotassium Channels, Voltage-GatedProtein Kinase CRatsRats, Sprague-DawleyRNA, MessengerSecond Messenger SystemsShaw Potassium ChannelsSignal TransductionTranscription, GeneticConceptsDifferent signaling pathwaysKv3.1 potassium channel genePotassium channel genesBasic fibroblast growth factorChannel genesSignaling pathwaysNuclear protein kinase C activityMRNA levelsDifferent channel proteinsProtein kinase C inhibitorProtein kinase C activityKinase C inhibitorKinase C activityAlternative splicingNuclear RNAChannel proteinsMolecular mechanismsFibroblast growth factorDifferential regulationDevelopmental stagesSplice variantsC inhibitorPKC activityC activityGenes
1997
The Secretion of Classical and Peptide Cotransmitters from a Single Presynaptic Neuron Involves a Synaptobrevin-Like Molecule
Whim M, Niemann H, Kaczmarek L. The Secretion of Classical and Peptide Cotransmitters from a Single Presynaptic Neuron Involves a Synaptobrevin-Like Molecule. Journal Of Neuroscience 1997, 17: 2338-2347. PMID: 9065494, PMCID: PMC6573516, DOI: 10.1523/jneurosci.17-07-02338.1997.Peer-Reviewed Original ResearchMeSH KeywordsAcetylcholineAnimalsAplysiaCalciumCells, CulturedCoculture TechniquesElectric ConductivityGanglia, InvertebrateKineticsMagnesiumMembrane PotentialsMembrane ProteinsNerve Tissue ProteinsNeuronsNeurons, AfferentNeuropeptidesPatch-Clamp TechniquesPresynaptic TerminalsRecombinant ProteinsR-SNARE ProteinsSynapsesTetanus ToxinConceptsClassical transmittersSingle presynaptic neuronRelease of neuropeptidesSingle action potentialPresynaptic release sitesSecretion of peptidesNeuron B2Peptidergic synapsesSynaptic typesSensory neuronsPresynaptic neuronsTetanus toxinPeptide cotransmittersAction potentialsPresynaptic injectionSecretionNeuronsMolecular mechanismsSynapseTypes of transmittersB2CotransmitterNeuropeptidesPeptidesReleaseIdentification of a Vesicular Pool of Calcium Channels in the Bag Cell Neurons of Aplysia californica
White B, Kaczmarek L. Identification of a Vesicular Pool of Calcium Channels in the Bag Cell Neurons of Aplysia californica. Journal Of Neuroscience 1997, 17: 1582-1595. PMID: 9030618, PMCID: PMC6573390, DOI: 10.1523/jneurosci.17-05-01582.1997.Peer-Reviewed Original ResearchConceptsBag cell neuronsCalcium channel alpha1 subunitAplysia nervous systemProtein kinase CCell neuronsAplysia californicaBag cell clustersCalcium channelsChannel alpha1 subunitCell clustersVesicular channelsMembrane proteinsReverse-transcribed RNAVesicular localizationPlasma membraneEgg-laying hormoneMolecular mechanismsSubcellular distributionKinase CLysoTracker RedDense-core vesiclesAcidic organellesGrowth conesCalcium channel subtypesCalcium current modulation
1985
Enhancement of calcium current in Aplysia neurones by phorbol ester and protein kinase C
DeRiemer SA, Strong JA, Albert KA, Greengard P, Kaczmarek LK. Enhancement of calcium current in Aplysia neurones by phorbol ester and protein kinase C. Nature 1985, 313: 313-316. PMID: 2578617, DOI: 10.1038/313313a0.Peer-Reviewed Original ResearchConceptsProtein kinase CKinase CProtein kinase presentEndogenous protein kinase CKinase presentProtein kinase1Molecular mechanismsCellular componentsPhorbol ester TPAIon channelsPhorbol esterMammalian brainTumor-promoting phorbol ester TPAMollusc AplysiaPhysiological propertiesEnzymeNeuronal excitabilityDirect evidenceKinase1PhosphorylationProteinHigh concentrationsActivationAplysia