Fast Fission Yeast Genome Editing by CRISPR/Cas9 Using Gap Repair and Fluoride Selection
Ren Y, Fernandez R, Saito T, Fujita B, Mousavi I, Berro J. Fast Fission Yeast Genome Editing by CRISPR/Cas9 Using Gap Repair and Fluoride Selection. Methods In Molecular Biology 2024, 2862: 141-154. PMID: 39527198, DOI: 10.1007/978-1-0716-4168-2_10.Peer-Reviewed Original ResearchCRISPR-Cas9 editing efficiency in fission yeast is not limited by homology search and is improved by combining gap-repair with fluoride selection
Fernandez R, Berro J. CRISPR-Cas9 editing efficiency in fission yeast is not limited by homology search and is improved by combining gap-repair with fluoride selection. MicroPublication Biology 2024, 2024: 10.17912/micropub.biology.001191. PMID: 38778900, PMCID: PMC11109758, DOI: 10.17912/micropub.biology.001191.Peer-Reviewed Original ResearchFission yeastEditing efficiencyHomology searchHomologous recombinational repair machineryDonor DNACRISPR-Cas9 protocolImprove editing efficiencyCRISPR-Cas9 editingModel organismsSelectable markerCut siteYeastGenome editingRepair machineryGap repairGenomeHomologyDNAEditing sequenceFissionLociHaloTagProteinSequenceMachinery