2024
High-fat-diet-induced hepatic insulin resistance per se attenuates murine de novo lipogenesis
Goedeke L, Strober J, Suh R, Paolella L, Li X, Rogers J, Petersen M, Nasiri A, Casals G, Kahn M, Cline G, Samuel V, Shulman G, Vatner D. High-fat-diet-induced hepatic insulin resistance per se attenuates murine de novo lipogenesis. IScience 2024, 27: 111175. PMID: 39524330, PMCID: PMC11550620, DOI: 10.1016/j.isci.2024.111175.Peer-Reviewed Original ResearchDuration of high-fat dietAttenuated insulin signalingHigh-fat dietHepatic insulin resistanceInsulin signalingInsulin stimulationLipogenic substrateStimulation of de novo lipogenesisReduced lipogenesisHFD feedingReduce DNLInsulin resistanceResistance per seLipogenesisInsulin resistance per sePathway selectionGlucose metabolismHepatic IRMiceFat dietSREBP1cINSRO-GlcNAc modification in endothelial cells modulates adiposity via fat absorption from the intestine in mice
Ohgaku S, Ida S, Ohashi N, Morino K, Ishikado A, Yanagimachi T, Murata K, Sato D, Ugi S, Nasiri A, Shulman G, Maegawa H, Kume S, Fujita Y. O-GlcNAc modification in endothelial cells modulates adiposity via fat absorption from the intestine in mice. Heliyon 2024, 10: e34490. PMID: 39130439, PMCID: PMC11315187, DOI: 10.1016/j.heliyon.2024.e34490.Peer-Reviewed Original ResearchEndothelial cellsHigh-fat dietControl miceLipid absorptionExpression of VEGFR3Body weightNitric oxide donorReduced body weightKnockout miceTherapeutic strategiesOxide donorDecreased expressionIntercellular junctionsMiceHigh-fatNutrient-sensing mechanismsFat absorptionO-GlcNAcylationGlucose metabolismVE-cadherinMorphological alterationsMetabolic regulatory mechanismsJunction morphologyLipid metabolismO-GlcNAc transferase1571-P: CIDEB and CGI-58 Regulate Liver Lipid Droplet Size with Cholesterol Content, Linking to Inflammation and Fibrosis in Metabolic Dysfunction–Associated Steatohepatitis
SAKUMA I, GASPAR R, NASIRI A, KAHN M, ZHENG J, GUERRA M, YIMLAMAI D, MURRAY S, PERELIS M, BARNES W, VATNER D, PETERSEN K, SAMUEL V, SHULMAN G. 1571-P: CIDEB and CGI-58 Regulate Liver Lipid Droplet Size with Cholesterol Content, Linking to Inflammation and Fibrosis in Metabolic Dysfunction–Associated Steatohepatitis. Diabetes 2024, 73 DOI: 10.2337/db24-1571-p.Peer-Reviewed Original ResearchLipid droplet sizeCGI-58Choline-deficient l-amino acid-defined high-fat dietGlycerol-3-phosphate acyltransferaseAntisense oligonucleotidesComparative gene identification-58Glycerol-3-phosphateLoss of function mutationsLipid droplet morphologyExpression of CGI-58Liver inflammationCidebCholesterol contentFunction mutationsL-amino acid-defined high-fat dietComplications of type 2 diabetesMolecular mechanismsDevelopment of liver inflammationMacrophage crown-like structuresType 2 diabetesHigh-fat dietCrown-like structuresASO treatmentGPAMKnockdown292-OR: Coenzyme A Synthase Knockdown Alleviates Metabolic Dysfunction–Associated Steatohepatitis via Decreasing Cholesterol in Liver Lipid Droplets
SAKUMA I, GASPAR R, NASIRI A, KAHN M, GUERRA M, YIMLAMAI D, MURRAY S, PERELIS M, BARNES W, VATNER D, PETERSEN K, SAMUEL V, SHULMAN G. 292-OR: Coenzyme A Synthase Knockdown Alleviates Metabolic Dysfunction–Associated Steatohepatitis via Decreasing Cholesterol in Liver Lipid Droplets. Diabetes 2024, 73 DOI: 10.2337/db24-292-or.Peer-Reviewed Original ResearchCholine-deficient l-amino acid-defined high-fat dietAccumulation of cholesterolMRNA expressionPlasma ALTL-amino acid-defined high-fat dietProtective effectLiver lipid dropletsType 2 diabetesPotential therapeutic approachHigh-fat dietDecreased plasma ALTFibrosis markersFree cholesterol accumulationLipid dropletsLiver inflammationDay 1Macrophage markersHepatic inflammationMouse modelMarker expressionTherapeutic approachesDay 2Day 3Day 7Fibrosis1637-P: TLC-6740, a Liver-Targeted Mitochondrial Protonophore, Increases Energy Expenditure and Lipid Utilization in Obese Mice
SRODA N, VIJAYAKUMAR A, MURAKAMI E, WENG S, SHULMAN G, MYERS R, SUBRAMANIAN M. 1637-P: TLC-6740, a Liver-Targeted Mitochondrial Protonophore, Increases Energy Expenditure and Lipid Utilization in Obese Mice. Diabetes 2024, 73 DOI: 10.2337/db24-1637-p.Peer-Reviewed Original ResearchEnergy intakeWeight lossEnergy expenditureRespiratory exchange ratioMitochondrial protonophoreObese miceDose-dependent weight lossReduced oral intakeData support evaluationDays of dosingC57 BL/6 miceDiet-induced obese miceNegative energy balanceMale C57 BL/6 miceIncreased energy expenditureWhole-body lipid utilizationCompared to pre-treatmentHigh-fat dietOral intakePO BIDBL/6 miceIndirect calorimetryMetabolic benefitsLipid utilizationVEH
2023
O-linked N-acetylglucosamine modification is essential for physiological adipose expansion induced by high-fat feeding
Nakamoto A, Ohashi N, Sugawara L, Morino K, Ida S, Perry R, Sakuma I, Yanagimachi T, Fujita Y, Ugi S, Kume S, Shulman G, Maegawa H. O-linked N-acetylglucosamine modification is essential for physiological adipose expansion induced by high-fat feeding. AJP Endocrinology And Metabolism 2023, 325: e46-e61. PMID: 37224467, PMCID: PMC10292976, DOI: 10.1152/ajpendo.00263.2022.Peer-Reviewed Original ResearchConceptsFKO miceAdipose tissueBody weight gainPrimary cultured adipocytesAdipose expansionFree fatty acidsInflammatory genesWeight gainFree fatty acid effluxCultured adipocytesDiet-induced obesityHigh-fat dietHigh-fat feedingLess body weightDe novo lipogenesisAdipose tissue physiologyDe novo lipogenesis genesFatty acid effluxWeeks of ageAdipose inflammationGlucose intoleranceRAW 264.7 macrophagesControl miceFatty acidsSevere fibrosis
2022
Sex‐ and strain‐specific effects of mitochondrial uncoupling on age‐related metabolic diseases in high‐fat diet‐fed mice
Goedeke L, Murt KN, Di Francesco A, Camporez JP, Nasiri AR, Wang Y, Zhang X, Cline GW, de Cabo R, Shulman GI. Sex‐ and strain‐specific effects of mitochondrial uncoupling on age‐related metabolic diseases in high‐fat diet‐fed mice. Aging Cell 2022, 21: e13539. PMID: 35088525, PMCID: PMC8844126, DOI: 10.1111/acel.13539.Peer-Reviewed Original ResearchConceptsControlled-release mitochondrial protonophoreAge-related metabolic diseasesHepatocellular carcinomaMetabolic diseasesHigh-fat diet-fed miceProtein kinase C epsilon activationDiet-induced obese miceWhole-body energy expenditureC57BL/6J male miceDiet-fed miceHigh-fat dietHepatic lipid peroxidationHepatic lipid contentMitochondrial uncouplingHepatic insulin resistanceHigh therapeutic indexHepatic mitochondrial biogenesisStrain-specific effectsSex-specific mannerCRMP treatmentHFD feedingUnwanted side effectsObese miceInsulin resistanceChronic ingestion
2021
335-OR: Lipid-Induced Insulin Resistance in the Renal Cortex Is Associated with Plasma Membrane Sn-1,2-diacylglycerol Accumulation and PKCe Translocation
HUBBARD B, GASPAR R, ZHANG D, KAHN M, NASIRI A, ZHANG X, CLINE G, SHULMAN G. 335-OR: Lipid-Induced Insulin Resistance in the Renal Cortex Is Associated with Plasma Membrane Sn-1,2-diacylglycerol Accumulation and PKCe Translocation. Diabetes 2021, 70 DOI: 10.2337/db21-335-or.Peer-Reviewed Original ResearchHigh-fat dietInsulin receptorInsulin resistanceLipid-Induced Insulin ResistanceRC miceProtein kinase CεRegular chowHFD miceRenal cortexCitrate synthase fluxHyperinsulinemic-euglycemic clamp conditionsAktS473 phosphorylationFatty acid fluxPyruvate oxidationPKCε translocationPyruvate dehydrogenase fluxPhosphorylationDiacylglycerol accumulationHFD feedingFat dietSpouse/partnerFold increaseSynthase fluxTranslocationIonis Pharmaceuticals
2020
Erratum. TFAM Enhances Fat Oxidation and Attenuates High-Fat Diet–Induced Insulin Resistance in Skeletal Muscle. Diabetes 2019;68:1552–1564
Koh JH, Johnson ML, Dasari S, LeBrasseur NK, Vuckovic I, Henderson GC, Cooper SA, Manjunatha S, Ruegsegger GN, Shulman GI, Lanza IR, Nair KS. Erratum. TFAM Enhances Fat Oxidation and Attenuates High-Fat Diet–Induced Insulin Resistance in Skeletal Muscle. Diabetes 2019;68:1552–1564. Diabetes 2020, 69: 1854-1854. PMID: 32532806, PMCID: PMC7519475, DOI: 10.2337/db20-er08a.Peer-Reviewed Original ResearchMON-635 FDXR Regulates Iron Metabolism and Glucose Metabolism in Liver
Sakuma I, Yokoyama M, Yamagata K, Hashimoto N, Nakayama A, Shulman G, Tanaka T. MON-635 FDXR Regulates Iron Metabolism and Glucose Metabolism in Liver. Journal Of The Endocrine Society 2020, 4: mon-635. PMCID: PMC7207756, DOI: 10.1210/jendso/bvaa046.1557.Peer-Reviewed Original ResearchNon-alcoholic fatty liver diseaseForkhead box protein O1Iron metabolismFoxO1 nuclear exclusionOxidative stressFatty liver diseaseSerum ferritin levelsMouse liverHigh-fat dietType 2 diabetesPathogenesis of diabetesNovel therapeutic targetIron regulatory genesHepatic iron contentTreatment of diabetesHepG2 cellsBox protein O1Glucose intoleranceMost patientsFerritin levelsLiver diseaseClinical studiesGluconeogenesis activationFDXR expressionGlucose metabolism
2019
Distinct Hepatic PKA and CDK Signaling Pathways Control Activity-Independent Pyruvate Kinase Phosphorylation and Hepatic Glucose Production
Gassaway BM, Cardone RL, Padyana AK, Petersen MC, Judd ET, Hayes S, Tong S, Barber KW, Apostolidi M, Abulizi A, Sheetz JB, Kshitiz, Aerni HR, Gross S, Kung C, Samuel VT, Shulman GI, Kibbey RG, Rinehart J. Distinct Hepatic PKA and CDK Signaling Pathways Control Activity-Independent Pyruvate Kinase Phosphorylation and Hepatic Glucose Production. Cell Reports 2019, 29: 3394-3404.e9. PMID: 31825824, PMCID: PMC6951436, DOI: 10.1016/j.celrep.2019.11.009.Peer-Reviewed Original ResearchConceptsCyclin-dependent kinasesMetabolic control pointPhosphorylation sitesNuclear retentionCDK activityPKL activityDays high-fat dietKinase phosphorylationImportant enzymePyruvate kinaseHigh-fat dietS113KinaseEnzyme kineticsPhosphorylationAdditional control pointsRegulationGlucose productionHepatic glucose productionInsulin resistanceGlycolysisEnzymePKAPathwayActivityHepatic insulin sensitivity is improved in high‐fat diet‐fed Park2 knockout mice in association with increased hepatic AMPK activation and reduced steatosis
Edmunds LR, Huckestein BR, Kahn M, Zhang D, Chu Y, Zhang Y, Wendell SG, Shulman GI, Jurczak MJ. Hepatic insulin sensitivity is improved in high‐fat diet‐fed Park2 knockout mice in association with increased hepatic AMPK activation and reduced steatosis. Physiological Reports 2019, 7: e14281. PMID: 31724300, PMCID: PMC6854109, DOI: 10.14814/phy2.14281.Peer-Reviewed Original ResearchConceptsPark2 KO miceHepatic insulin sensitivityKO miceInsulin sensitivityInsulin resistanceShort-term HFD feedingDiet-induced hepatic insulin resistanceWhole-body insulin sensitivityPark2 knockout miceImproved hepatic insulin sensitivityDiet-induced obesityHigh-fat dietBioactive lipid speciesTumor necrosis factorHepatic insulin resistanceHepatic AMPK activationNegative energy balanceEndoplasmic reticulum stress responseRegular chowCytokine levelsHFD feedingReduced steatosisChronic HFDInterleukin-6Necrosis factorAnti‐inflammatory effects of oestrogen mediate the sexual dimorphic response to lipid‐induced insulin resistance
Camporez JP, Lyu K, Goldberg EL, Zhang D, Cline GW, Jurczak MJ, Dixit VD, Petersen KF, Shulman GI. Anti‐inflammatory effects of oestrogen mediate the sexual dimorphic response to lipid‐induced insulin resistance. The Journal Of Physiology 2019, 597: 3885-3903. PMID: 31206703, PMCID: PMC6876753, DOI: 10.1113/jp277270.Peer-Reviewed Original ResearchConceptsObesity-induced insulin resistanceHigh-fat dietEctopic lipid contentWhite adipose tissue lipolysisInsulin resistanceAdipose tissue lipolysisMale miceInsulin sensitivityFemale miceInsulin-stimulated suppressionWAT inflammationTissue lipolysisRodent studiesTumor necrosis factor αWhole-body insulin sensitivityLipid-induced insulin resistanceMetabolic homeostasisAge-matched menInterleukin-6 concentrationsSkeletal muscleAnti-inflammatory effectsType 2 diabetesInsulin-mediated suppressionSexual dimorphic responseNecrosis factor α
2018
Loss of Nucleobindin-2 Causes Insulin Resistance in Obesity without Impacting Satiety or Adiposity
Ravussin A, Youm YH, Sander J, Ryu S, Nguyen K, Varela L, Shulman GI, Sidorov S, Horvath TL, Schultze JL, Dixit VD. Loss of Nucleobindin-2 Causes Insulin Resistance in Obesity without Impacting Satiety or Adiposity. Cell Reports 2018, 24: 1085-1092.e6. PMID: 30067966, PMCID: PMC6223120, DOI: 10.1016/j.celrep.2018.06.112.Peer-Reviewed Original ResearchConceptsHigh-fat dietInsulin resistanceFood intakeMetabolic inflammationNucleobindin-2M2-like macrophage polarizationHigh-fat diet feedingWeight lossAdipose tissue macrophagesObesity-associated diseasesNesfatin-1Insulin sensitivityDiet feedingMacrophage polarizationNUCB2 proteinMyeloid cellsTissue macrophagesGlobal deletionClassical M1NUCB2NFκB-dependent mannerWeight gainSatietyIntakeAdiposityEffect of a Controlled-Release Mitochondrial Protonophore (CRMP) on Healthspan and Lifespan in Mice
GOEDEKE L, CAMPOREZ J, NASIRI A, WANG Y, ZHANG X, SHULMAN G. Effect of a Controlled-Release Mitochondrial Protonophore (CRMP) on Healthspan and Lifespan in Mice. Diabetes 2018, 67 DOI: 10.2337/db18-123-lb.Peer-Reviewed Original ResearchControlled-release mitochondrial protonophoreCRMP treatmentHepatic steatosisDiet-induced rodent modelWhole body insulin responsivenessInflammation/fibrosisMale C57BL/6J miceWhole-body energy expenditureHyperinsulinemic-euglycemic clampHigh-fat dietType 2 diabetesGlucose infusion rateMitochondrial protonophorePlasma glucose concentrationWide therapeutic indexStrict dietary regimeSecond-generation compoundsTransaminase levelsFatty liverLiver triglyceridesInsulin resistanceAge-related diseasesC57BL/6J miceHepatic triglyceridesFood intakeMetabolic Inflexibility Revisited—Muscle Substrate Oxidation Is Mechanistically Dissociated from Muscle Insulin Resistance in Rats
SONG J, PERRY R, MUNK A, ZHANG Y, ZHANG D, SHULMAN G. Metabolic Inflexibility Revisited—Muscle Substrate Oxidation Is Mechanistically Dissociated from Muscle Insulin Resistance in Rats. Diabetes 2018, 67 DOI: 10.2337/db18-240-lb.Peer-Reviewed Original ResearchInsulin-resistant ratsMuscle insulin resistanceHigh-fat dietResistant ratsInsulin resistanceNormal ratsSoleus muscleLipid-induced muscle insulin resistanceSkeletal muscle insulin resistancePeripheral glucose metabolismHyperinsulinemic-euglycemic clampPathogenesis of obesityMuscle insulin sensitivityGlucose oxidationMuscle glucose transportAcute infusionPyruvate dehydrogenase fluxSubstrate oxidationFat dietMuscle glucoseInsulin sensitivityAcute modulationGlucose metabolismFat oxidationTissue-specific indices