2024
The mouse metabolic phenotyping center (MMPC) live consortium: an NIH resource for in vivo characterization of mouse models of diabetes and obesity
Laughlin M, McIndoe R, Adams S, Araiza R, Ayala J, Kennedy L, Lanoue L, Lantier L, Macy J, Malabanan E, McGuinness O, Perry R, Port D, Qi N, Elias C, Shulman G, Wasserman D, Lloyd K. The mouse metabolic phenotyping center (MMPC) live consortium: an NIH resource for in vivo characterization of mouse models of diabetes and obesity. Mammalian Genome 2024, 35: 485-496. PMID: 39191872, PMCID: PMC11522164, DOI: 10.1007/s00335-024-10067-y.Peer-Reviewed Original ResearchMouse Metabolic Phenotyping CentersMouse model of diabetesModels of diabetesNational Institutes of HealthNational Institute for DiabetesDigestive and Kidney DiseasesBehavioral phenotyping testsRenal functionProcedure in vivoFood intakeIn vivo characterizationMouse modelHeterogeneity of diabetesKidney diseaseBody compositionPhenotyping CentersInstitutes of HealthMiceObesityDiabetesPhenotypic testsWhole-body carbohydrateInsulin actionLipid metabolismLiving mice899-P: Combinations of the Mitochondrial Protonophore TLC-6740 and/or the ACC2 Inhibitor TLC-3595 Provide Additive Glycemic Benefits to Semaglutide (SEMA) in db/db Mice
VIJAYAKUMAR A, SRODA N, MURAKAMI E, WENG S, MYERS R, SUBRAMANIAN M, SHULMAN G. 899-P: Combinations of the Mitochondrial Protonophore TLC-6740 and/or the ACC2 Inhibitor TLC-3595 Provide Additive Glycemic Benefits to Semaglutide (SEMA) in db/db Mice. Diabetes 2024, 73 DOI: 10.2337/db24-899-p.Peer-Reviewed Original ResearchOral glucose tolerance testGLP-1R agonistsDb/db miceIncremental AUCGlucose tolerance testMale db/db miceImproved glucose toleranceSemaglutide groupGlycemic parametersSemaglutideTolerance testFood intakeGlucose toleranceGLP-1RLiver-targeted mitochondrial uncouplerDb/dbMiceGlucose bolusVEHAgonistsEvaluation of combinationsHbA1cDiabetesMitochondrial uncouplingAssess effects
2021
282-OR: The Effect of Glucagon on Rates of Hepatic Mitochondrial Oxidation and Pyruvate Carboxylase Flux in Man Assessed by Positional Isotopomer NMR Tracer Analysis (PINTA)
PETERSEN K, SHULMAN G. 282-OR: The Effect of Glucagon on Rates of Hepatic Mitochondrial Oxidation and Pyruvate Carboxylase Flux in Man Assessed by Positional Isotopomer NMR Tracer Analysis (PINTA). Diabetes 2021, 70 DOI: 10.2337/db21-282-or.Peer-Reviewed Original ResearchHepatic mitochondrial oxidationPhysiological increaseSpouse/partnerDual agonistsGilead SciencesJanssen ResearchTreatment of T2DPlasma glucagon concentrationsNovo NordiskMitochondrial oxidationEffect of glucagonPyruvate carboxylase fluxMitochondrial fat oxidationAnorexic effectGlucagon concentrationsHepatic steatosisClinical trialsC-peptideGLP-1Food intakeHealthy volunteersFat oxidationIonis PharmaceuticalsGlucagonGlucose production
2019
Controlled-release mitochondrial protonophore (CRMP) reverses dyslipidemia and hepatic steatosis in dysmetabolic nonhuman primates
Goedeke L, Peng L, Montalvo-Romeral V, Butrico GM, Dufour S, Zhang XM, Perry RJ, Cline GW, Kievit P, Chng K, Petersen KF, Shulman GI. Controlled-release mitochondrial protonophore (CRMP) reverses dyslipidemia and hepatic steatosis in dysmetabolic nonhuman primates. Science Translational Medicine 2019, 11 PMID: 31578240, PMCID: PMC6996238, DOI: 10.1126/scitranslmed.aay0284.Peer-Reviewed Original ResearchConceptsControlled-release mitochondrial protonophoreNonalcoholic fatty liver diseaseCRMP treatmentHepatic triglyceridesDiet-induced rodent modelReversal of hypertriglyceridemiaFatty liver diseaseNonhuman primate modelMitochondrial protonophoreEndogenous glucose productionLow-density lipoproteinMitochondrial fat oxidationHepatic inflammationMetabolic syndromeFatty liverLiver diseaseHepatic steatosisInsulin resistanceAdverse reactionsPlasma triglyceridesPrimate modelOral administrationFood intakeHepatic mitochondrial oxidationRodent models19-OR: Controlled-Release Mitochondrial Protonophore (CRMP) Reverses Hypertriglyceridemia and Hepatic Steatosis in Dysmetabolic Nonhuman Primates
GOEDEKE L, ROMERAL V, BUTRICO G, KAHN M, DUFOUR S, ZHANG X, CLINE G, PETERSEN K, CHNG K, SHULMAN G. 19-OR: Controlled-Release Mitochondrial Protonophore (CRMP) Reverses Hypertriglyceridemia and Hepatic Steatosis in Dysmetabolic Nonhuman Primates. Diabetes 2019, 68 DOI: 10.2337/db19-19-or.Peer-Reviewed Original ResearchControlled-release mitochondrial protonophoreSpouse/partnerCRMP treatmentInsulin resistanceDiet-induced rodent modelJanssen ResearchReversal of hypertriglyceridemiaNAFLD/NASHInflammation/fibrosisNonhuman primate modelMitochondrial protonophoreEndogenous glucose productionHepatic insulin resistanceHepatic acetyl-CoA contentAdvisory PanelMitochondrial fat oxidationMetabolic syndromeFatty liverHepatic steatosisAdverse reactionsHepatic triglyceridesAcetyl-CoA contentPrimate modelNovo Nordisk A/S.Food intake
2018
Loss of Nucleobindin-2 Causes Insulin Resistance in Obesity without Impacting Satiety or Adiposity
Ravussin A, Youm YH, Sander J, Ryu S, Nguyen K, Varela L, Shulman GI, Sidorov S, Horvath TL, Schultze JL, Dixit VD. Loss of Nucleobindin-2 Causes Insulin Resistance in Obesity without Impacting Satiety or Adiposity. Cell Reports 2018, 24: 1085-1092.e6. PMID: 30067966, PMCID: PMC6223120, DOI: 10.1016/j.celrep.2018.06.112.Peer-Reviewed Original ResearchConceptsHigh-fat dietInsulin resistanceFood intakeMetabolic inflammationNucleobindin-2M2-like macrophage polarizationHigh-fat diet feedingWeight lossAdipose tissue macrophagesObesity-associated diseasesNesfatin-1Insulin sensitivityDiet feedingMacrophage polarizationNUCB2 proteinMyeloid cellsTissue macrophagesGlobal deletionClassical M1NUCB2NFκB-dependent mannerWeight gainSatietyIntakeAdiposityEffect of a Controlled-Release Mitochondrial Protonophore (CRMP) on Healthspan and Lifespan in Mice
GOEDEKE L, CAMPOREZ J, NASIRI A, WANG Y, ZHANG X, SHULMAN G. Effect of a Controlled-Release Mitochondrial Protonophore (CRMP) on Healthspan and Lifespan in Mice. Diabetes 2018, 67 DOI: 10.2337/db18-123-lb.Peer-Reviewed Original ResearchControlled-release mitochondrial protonophoreCRMP treatmentHepatic steatosisDiet-induced rodent modelWhole body insulin responsivenessInflammation/fibrosisMale C57BL/6J miceWhole-body energy expenditureHyperinsulinemic-euglycemic clampHigh-fat dietType 2 diabetesGlucose infusion rateMitochondrial protonophorePlasma glucose concentrationWide therapeutic indexStrict dietary regimeSecond-generation compoundsTransaminase levelsFatty liverLiver triglyceridesInsulin resistanceAge-related diseasesC57BL/6J miceHepatic triglyceridesFood intake
2008
N-acylphosphatidylethanolamine, a Gut- Derived Circulating Factor Induced by Fat Ingestion, Inhibits Food Intake
Gillum MP, Zhang D, Zhang XM, Erion DM, Jamison RA, Choi C, Dong J, Shanabrough M, Duenas HR, Frederick DW, Hsiao JJ, Horvath TL, Lo CM, Tso P, Cline GW, Shulman GI. N-acylphosphatidylethanolamine, a Gut- Derived Circulating Factor Induced by Fat Ingestion, Inhibits Food Intake. Cell 2008, 135: 813-824. PMID: 19041747, PMCID: PMC2643061, DOI: 10.1016/j.cell.2008.10.043.Peer-Reviewed Original ResearchConceptsFood intakeInhibits food intakeTreatment of obesityNovel therapeutic targetCentral nervous systemUnknown physiological significanceFat ingestionCirculating factorsN-acylphosphatidylethanolaminePlasma lipidsIntracerebroventricular infusionPhysiologic dosesSystemic administrationTherapeutic targetBody weightNervous systemIngested fatSmall intestineIntakeTaste aversionInfusionPhysiological significanceNanomolar amountsObesityHypothalamus
1997
The Effect of Leptin Is Enhanced by Microinjection Into the Ventromedial Hypothalamus
Jacob R, Dziura J, Medwick M, Leone P, Caprio S, During M, Shulman G, Sherwin R. The Effect of Leptin Is Enhanced by Microinjection Into the Ventromedial Hypothalamus. Diabetes 1997, 46: 150-152. PMID: 8971096, DOI: 10.2337/diab.46.1.150.Peer-Reviewed Original ResearchConceptsVentromedial hypothalamusFood intakeBody weightDistinct central nervous system regionsBrain regionsCentral nervous system regionsTwice-daily injectionsDorsal raphe nucleusSuppress food intakeEffects of leptinNervous system regionsRecombinant human leptinBody weight changesLeptin-induced effectsDaily food intakeBrain cannulaDorsal rapheLeptin administrationRaphe nucleusGuide cannulaMale ratsLateral ventricleSmall doseLeptinHuman leptin