2019
Human Physiology
Boulpaep E, Boron W. Human Physiology. 2019 DOI: 10.1016/b978-0-12-801238-3.62186-4.Peer-Reviewed Original Research
2016
Romk1 Knockout Mice Do Not Produce Bartter Phenotype but Exhibit Impaired K Excretion*
Dong K, Yan Q, Lu M, Wan L, Hu H, Guo J, Boulpaep E, Wang W, Giebisch G, Hebert SC, Wang T. Romk1 Knockout Mice Do Not Produce Bartter Phenotype but Exhibit Impaired K Excretion*. Journal Of Biological Chemistry 2016, 291: 5259-5269. PMID: 26728465, PMCID: PMC4777858, DOI: 10.1074/jbc.m115.707877.Peer-Reviewed Original Research
2010
Substrate specificity of Rhbg: ammonium and methyl ammonium transport
Nakhoul N, Abdulnour-Nakhoul S, Boulpaep E, Rabon E, Schmidt E, Hamm L. Substrate specificity of Rhbg: ammonium and methyl ammonium transport. American Journal Of Physiology - Cell Physiology 2010, 299: c695-c705. PMID: 20592240, PMCID: PMC2944323, DOI: 10.1152/ajpcell.00019.2010.Peer-Reviewed Original ResearchMouse cystic fibrosis transmembrane conductance regulator forms cAMP-PKA–regulated apical chloride channels in cortical collecting duct
Lu M, Dong K, Egan ME, Giebisch GH, Boulpaep EL, Hebert SC. Mouse cystic fibrosis transmembrane conductance regulator forms cAMP-PKA–regulated apical chloride channels in cortical collecting duct. Proceedings Of The National Academy Of Sciences Of The United States Of America 2010, 107: 6082-6087. PMID: 20231442, PMCID: PMC2851921, DOI: 10.1073/pnas.0902661107.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBenzoatesChloride ChannelsCyclic AMPCyclic AMP-Dependent Protein KinasesCystic Fibrosis Transmembrane Conductance RegulatorFemaleIn Vitro TechniquesKidney CortexKidney Tubules, CollectingKineticsMiceMice, Inbred C57BLMice, Inbred CFTRMice, KnockoutMice, TransgenicMutationOocytesPatch-Clamp TechniquesPotassium Channels, Inwardly RectifyingRecombinant ProteinsThiazolidinesXenopus laevisConceptsCystic fibrosis transmembrane conductance regulatorFibrosis transmembrane conductance regulatorTransmembrane conductance regulatorCl- channel activityConductance regulatorCl- channelsApical membrane proteinsExpression of CFTRChannel activityCFTR Cl- channelApical chloride channelApical cell membraneDeltaF508 CFTR mutationMembrane proteinsCatalytic subunitXenopus laevis oocytesForm proteinPrincipal cellsCFTR channelsROMK null miceApical patchesApical membraneSingle-channel conductanceChloride channelsCell membrane
2009
CHAPTER 17 ORGANIZATION OF THE CARDIOVASCULAR SYSTEM
Boulpaep E. CHAPTER 17 ORGANIZATION OF THE CARDIOVASCULAR SYSTEM. 2009, 429-447. DOI: 10.1016/b978-1-4160-3115-4.50020-2.ChaptersCHAPTER 20 THE MICROCIRCULATION
Boulpaep E. CHAPTER 20 THE MICROCIRCULATION. 2009, 482-503. DOI: 10.1016/b978-1-4160-3115-4.50023-8.ChaptersCHAPTER 19 ARTERIES AND VEINS
Boulpaep E. CHAPTER 19 ARTERIES AND VEINS. 2009, 467-481. DOI: 10.1016/b978-1-4160-3115-4.50022-6.ChaptersCHAPTER 1 FOUNDATIONS OF PHYSIOLOGY
Boulpaep E, Boron W. CHAPTER 1 FOUNDATIONS OF PHYSIOLOGY. 2009, 3-6. DOI: 10.1016/b978-1-4160-3115-4.50004-4.ChaptersCHAPTER 23 REGULATION OF ARTERIAL PRESSURE AND CARDIAC OUTPUT
Boulpaep E. CHAPTER 23 REGULATION OF ARTERIAL PRESSURE AND CARDIAC OUTPUT. 2009, 554-576. DOI: 10.1016/b978-1-4160-3115-4.50026-3.ChaptersCHAPTER 22 THE HEART AS A PUMP
Boulpaep E. CHAPTER 22 THE HEART AS A PUMP. 2009, 529-553. DOI: 10.1016/b978-1-4160-3115-4.50025-1.ChaptersCHAPTER 18 BLOOD
Boulpaep E. CHAPTER 18 BLOOD. 2009, 448-466. DOI: 10.1016/b978-1-4160-3115-4.50021-4.ChaptersCHAPTER 25 INTEGRATED CONTROL OF THE CARDIOVASCULAR SYSTEM
Boulpaep E. CHAPTER 25 INTEGRATED CONTROL OF THE CARDIOVASCULAR SYSTEM. 2009, 593-609. DOI: 10.1016/b978-1-4160-3115-4.50028-7.ChaptersProtein-protein interactions among ion channels regulate ion transport in the kidney.
Boulpaep E. Protein-protein interactions among ion channels regulate ion transport in the kidney. Bulletin Et Mémoires De L'Académie Royale De Médecine De Belgique 2009, 164: 133-41; discussion 141-2. PMID: 20120088.Peer-Reviewed Original ResearchConceptsAMP kinaseProtein CFTRCFTR channel gatingMembrane transport proteinsProtein-protein interactionsMembrane-attached proteinsSerine-threonine kinaseRegulation of transportKir 1.1Mg-ATPIon transportExtracellular agonistsMembrane proteinsTransport proteinsChannel gatingIntracellular ATP concentrationIntracellular messengerMembrane receptorsCFTRMetabolic signalsIon channelsChloride channelsEpithelial ion transportDirect interactionRenal K secretionCHAPTER 5 TRANSPORT OF SOLUTES AND WATER
Aronson P, Boron W, Boulpaep E. CHAPTER 5 TRANSPORT OF SOLUTES AND WATER. 2009, 106-146. DOI: 10.1016/b978-1-4160-3115-4.50008-1.Chapters
2006
CFTR is required for PKA-regulated ATP sensitivity of Kir1.1 potassium channels in mouse kidney
Lu M, Leng Q, Egan ME, Caplan MJ, Boulpaep EL, Giebisch GH, Hebert SC. CFTR is required for PKA-regulated ATP sensitivity of Kir1.1 potassium channels in mouse kidney. Journal Of Clinical Investigation 2006, 116: 797-807. PMID: 16470247, PMCID: PMC1361349, DOI: 10.1172/jci26961.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine TriphosphateAnimalsCurcuminCyclic AMP-Dependent Protein KinasesCystic Fibrosis Transmembrane Conductance RegulatorHydrogen-Ion ConcentrationKidneyMiceMice, Inbred C57BLMice, Inbred CFTRMice, TransgenicMutationOocytesPatch-Clamp TechniquesPotassium Channels, Inwardly RectifyingXenopus laevisConceptsFunctional switchCystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channelATP sensitivityEffects of CFTRThick ascending limbPotential physiological rolePKA activityRenal K channelsCystic fibrosisPhysiological roleSecretory channelsK channelsRenal tubule epithelial cellsApical membraneCFTRDeltaF508 mutationDistal nephron segmentsCl- channelsK homeostasisTubule epithelial cellsEpithelial cellsTAL cellsPotassium channelsK handlingGlibenclamide sensitivityCorrigendum to “Calcium-dependent, swelling-activated K+ conductance in human neuroblastoma cells” [Biochem. Biophys. Res. Commun. 308 (2003) 759–763]
Basavappa S, Mangel A, Boulpaep E. Corrigendum to “Calcium-dependent, swelling-activated K+ conductance in human neuroblastoma cells” [Biochem. Biophys. Res. Commun. 308 (2003) 759–763]. Biochemical And Biophysical Research Communications 2006, 340: 1016-1017. DOI: 10.1016/j.bbrc.2005.12.073.Peer-Reviewed Original Research
2005
Retraction
Flavell RA, Kaczmarek LK, Abdallah B, Boulpaep EL, Desai R, Basavappa S, Matza D, Peng YQ, Mehal WZ. Retraction. Science 2005, 310: 1903-1903. PMID: 16373558, DOI: 10.1126/science.310.5756.1903b.Peer-Reviewed Original ResearchRequirement of Voltage-Gated Calcium Channel ß4 Subunit for T Lymphocyte Functions
Badou A, Basavappa S, Desai R, Peng YQ, Matza D, Mehal WZ, Kaczmarek LK, Boulpaep EL, Flavell RA. Requirement of Voltage-Gated Calcium Channel ß4 Subunit for T Lymphocyte Functions. Science 2005, 307: 117-121. PMID: 15637280, DOI: 10.1126/science.1100582.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCalciumCalcium Channels, L-TypeCalcium SignalingCD4-Positive T-LymphocytesCytokinesDNA-Binding ProteinsIon Channel GatingLymphocyte ActivationMembrane PotentialsMiceMice, Inbred C3HMice, Inbred C57BLMutationNFATC Transcription FactorsNuclear ProteinsPatch-Clamp TechniquesPhosphorylationProtein SubunitsReceptors, Antigen, T-CellT-LymphocytesTranscription FactorsConceptsT lymphocytesCalcium channelsVoltage-gated calcium channelsT lymphocyte functionT cell receptor stimulationCell receptor stimulationCytokine productionLymphocyte functionCalcium influxReceptor stimulationCalcium responseCalcium entryTranscription factor NFATCav1 channelsLymphocytesAlpha1 subunitCav channelsNormal functionNonexcitable cellsDisplay impairmentsExcitable cellsChannel openingMolecular identityDiverse physiological processesPhysiological processes
2004
Paracellular Cl- permeability is regulated by WNK4 kinase: Insight into normal physiology and hypertension
Kahle KT, MacGregor GG, Wilson FH, Van Hoek AN, Brown D, Ardito T, Kashgarian M, Giebisch G, Hebert SC, Boulpaep EL, Lifton RP. Paracellular Cl- permeability is regulated by WNK4 kinase: Insight into normal physiology and hypertension. Proceedings Of The National Academy Of Sciences Of The United States Of America 2004, 101: 14877-14882. PMID: 15465913, PMCID: PMC522037, DOI: 10.1073/pnas.0406172101.Peer-Reviewed Original ResearchConceptsPseudohypoaldosteronism type IIPHAII-mutant WNK4Paracellular fluxPotent antihypertensive agentTight junction proteinsTight junctionsAntihypertensive agentsParacellular ion fluxPharmacologic propertiesTight junction structureTranscellular transportersWild-type WNK4Normal physiologyHypertensionTransepithelial resistanceWNK signalingKidney epitheliumTight junction formationParacellular pathwayWNK4Effect of WNK4EpitheliumType IIWNK4 kinaseHomeostasisCharacteristics of renal Rhbg as an NH4+ transporter
Nakhoul N, DeJong H, Abdulnour-Nakhoul S, Boulpaep E, Hering-Smith K, Hamm L. Characteristics of renal Rhbg as an NH4+ transporter. American Journal Of Physiology. Renal Physiology 2004, 288: f170-f181. PMID: 15353405, DOI: 10.1152/ajprenal.00419.2003.Peer-Reviewed Original Research